Русская версия English version   
Том 14   Выпуск 2   Год 2019
Киселев И.Н.1,2, Акбердин И.Р.2,3,6, Вертышев А.Ю.4, Попов Д.В.5, Колпаков Ф.А.1,2

Модульная графическая модель энергетического метаболизма в клетках скелетной мышцы

Математическая биология и биоинформатика. 2019;14(2):373-392.

doi: 10.17537/2019.14.373.

Список литературы

 

  1. Pedersen B.K., Febbraio M.A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nature Reviews Endocrinology. 2012;8(8):457–465. doi: 10.1038/nrendo.2012.49
  2. Li Y., Dash R. K., Kim J., Saidel G. M., Cabrera M. E. Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies. American Journal of Physiology-Cell Physiology. 2009;296(1):25–46. doi: 10.1152/ajpcell.00094.2008
  3. Akberdin I.R., Kazantsev F.V., Ermak T.V., Timonov V.S., Khlebodarova T.M., Likhoshvai V.A. In Silico Cell: Challenges and Perspectives. Mathematical Biology and Bioinformatics. 2013;8(1):295–315. doi: 10.17537/2013.8.295
  4. Korzeniewski B. Regulation of ATP supply during muscle contraction: theoretical studies. Biochemical Journal. 1998;330(3):1189–1195. doi: 10.1042/bj3301189
  5. Korzeniewski B. Regulation of ATP supply in mammalian skeletal muscle during resting state → intensive work transition. Biophysical Chemistry. 2000;83(1):19–34. doi: 10.1016/S0301-4622(99)00120-9
  6. Korzeniewski B., Zoladz J.A. A model of oxidative phosphorylation in mammalian skeletal muscle. Biophysical Chemistry. 2001;92(1–2):17–34. doi: 10.1016/S0301-4622(01)00184-3
  7. Lambeth M.J. and Kushmerick M.J. A computational model for glycogenolysis in skeletal muscle. Ann. Biomed. Eng. 2002;30:808–827.
  8. Korzeniewski B. and Liguzinski P. Theoretical studies on the regulation of anaerobic glycolysis and its influence on oxidative phosphorylation in skeletal muscle. Biophysical Chemistry. 2004;110(1–2):147–169. doi: 10.1016/j.bpc.2004.01.011
  9. Zhou L., Salem J.E., Saidel G.M., Stanley W.C., Cabrera M.E. Mechanistic model of cardiac energy metabolism predicts localization of glycolysis to cytosolic subdomain during ischemia. Am. J. Physiol. Heart Circ. Physiol. 2005;288:2400–2411.
  10. Zhou L., Stanley W.C., Saidel G.M., Yu X., Cabrera M.E. Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD: insights from in silico studies. J. Physiol. 2005;569:925–937. doi: 10.1113/jphysiol.2005.093146
  11. Vinnakota K.C., Kemp M.L., Kushmerick M.J. Dynamics of muscle glycogenolysis modeled with pH time-course computation and pH dependent reaction equilibria and enzyme kinetics. Biophys. J. 2006;91:1264–1287.
  12. Zhou L., Cabrera M.E., Okere I.C., Sharma N., Stanley W.C. Regulation of myocardial substrate metabolism during increased energy expenditure: insights from computational studies. Am. J. Physiol. Heart Circ. Physiol. 2006;291:1036–1046.
  13. Dash R.K., Dibella J.A., Cabrera M.E. A computational model of skeletal muscle metabolism linking cellular adaptations induced by altered loading states to metabolic responses during exercise. Biomed. Eng. Online. 2007;6(1):14.
  14. Wu F., Jeneson J.A.L., Beard D.A. Oxidative ATP synthesis in skeletal muscle is controlled by substrate feedback. Am. J. Physiol. Cell Physiol. 2007;292:115–124.
  15. Zhou L., Cabrera M.E., Huang H., Yuan C., Duda M., Sharma N., Bian F., Stanley W.C. Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation. J. Physiol. 2007;579:811–821. doi: 10.1113/jphysiol.2006.123828
  16. Li Y., Lai N., Kirwan J.P., Saidel G.M. Computational model of cellular metabolic dynamics in skeletal muscle fibers during moderate intensity exercise. Cellular and Mol. Bioeng. 2012;5(1):92–112.
  17. Kummitha C.M., Kalhan S.C., Saidel G.M., Lai N. Relating tissue/organ energy expenditure to metabolic fluxes in mouse and human: experimental data integrated with mathematical modeling. Physiol. Rep. 2014;2(9). doi: 10.14814/phy2.12159
  18. Snoep J.L., Bruggeman F., Olivier B.G. Westerhoff H.V. Towards building the silicon cell: a modular approach. Biosystems. 2006;83:207–216. doi: 10.1016/j.biosystems.2005.07.006
  19. Cooling M. T., Rouilly V., Misirli G., Lawson Ju T., Halinan J., Wipat A. Standard virtual biological parts: a repository for modeling components for synthetic biology. Bioinformatics. 2010;26(7):925–931. doi: 10.1093/bioinformatics/btq063
  20. Hernandez A. I., Le Rolle V., Defontaine A., Carrault G. A multiformalism and multiresolution modelling environment: application to the cardiovascular system and its regulation. Philosophical Transactions of the Royal Society. 2009;367(1908):4923–4940. doi: 10.1098/rsta.2009.0163
  21. Hunter P.J., Robbins P., Noble D. The IUPS human physiology project. Pflugers Archiv European Journal of Physiology. 2004;445(1):551–569.
  22. Fenner J.W., Brook B., Clapworthy G., Coveney P.V., Feipel V., Gregersen H., Hose D.R., Kohl P., Lawford P., McCormack K.M. et al. The EuroPhysiome, STEP and a roadmap for the virtual physiological human regulation. Philosophical Transactions of the Royal Society. 2008;366:2979–2999. doi: 10.1098/rsta.2008.0089
  23. Kolpakov F., Akberdin I., Kashapov T., Kiselev I., Kolmykov S., Kondrakhin Y., Kutumova E., Mandrik N., Pintus S., Ryabova A., Sharipov R., Yevshin I., Kel A. BioUML: an integrated environment for systems biology and collaborative analysis of biomedical data. Nucleic Acids Research. 2019;47(W1):W225–W233. doi: 10.1093/nar/gkz440
  24. Kiselev I.N., Semisalov B.V., Biberdorf E.A., Sharipov R.N., Blokhin A.M., Kolpakov F.A. Modular Modeling of the Human Cardiovascular System. Mathematical Biology and Bioinformatics. 2012;7(2):703–736 (in Russ.). doi: 10.17537/2012.7.703
  25. Kutumova E.O., Kiselev I.N., Sharipov R.N., Lavrik I.N., Kolpakov F.A. A modular model of the apoptosis machinery. Advances in Experimental Medicine and Biology. 2012;736:235–245. doi: 10.1007/978-1-4419-7210-1_13
  26. Hucka M., Bergmann F.T., Chaouiya C., Dräger A., Hoops S., Keating S.M., König M., Le Novère N., Myers Ch.J., Olivier B.G. et al. The Systems Biology Markup Language (SBML): Language Specification for Level 3 Version 2 Core. Release 2. 2019. doi: 10.1515/jib-2019-0021
  27. Le Novere N., Hucka M., Mi H., Moodie S., Schreiber F., Sorokin A., Demir E., Wegner K., Aladjem M.I., Wimalaratne S.M., Bergman, F.T. The systems biology graphical notation. Nature Biotechnology. 2009;27(8):735. doi: 10.1038/nbt.1558
  28. Davis J., Hylands C., Janneck J., Lee E.A., Liu J., Liu X., Neuendorffer S., Sachs S., Stewart M., Vissers K. et al. Overview of the Ptolemy Project: Technical Memorandum UCB/ERL M01/11. Berkeley: University of California, 2001. https://ptolemy.berkeley.edu/publications/papers/01/overview/overview.pdf (accessed 05 July 2019).
  29. Brown P.N., Byrne G.D. and Hindmarsh A.C. VODE: A variable-coefficient ODE solver. SIAM Journal on Scientific and Statistical Computing. 1989;10(5):1038–1051. doi: 10.1137/0910062
  30. Dormand J.R., Prince P.J. A family of embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics. 1980;6(1):19–26. doi: 10.1016/0771-050X(80)90013-3
  31. Randhawa R., Clifford A.S., Tyson J. Model composition for macromolecular regulatory networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB). 2010;7(2):278–287. doi: 10.1109/TCBB.2008.64
  32. JVODE page. http://wiki.biouml.org/index.php/JVODE (accessed 05 July 2019).
  33. Pinter K., Grignani R.T., Watkins H., Redwood C. Localisation of AMPK γ subunits in cardiac and skele tal muscles. Journal of Muscle Research and Cell Motility. 2013;34(5–6):369–378. doi: 10.1007/s10974-013-9359-4
  34. Dutka T.L., Lamb G.D. Na+–K+ pumps in the transverse tubular system of skeletal muscle fibers preferentially use ATP from glycolysis. American Journal of Physiology-Cell Physiology. 2007;293(3):967–977. doi: 10.1152/ajpcell.00132.2007
  35. Jensen T.E., Wojtaszewski J.F.P., Richter E.A. AMP-activated protein kinase in contraction regulation of skeletal muscle metabolism: necessary and/or sufficient? Acta Physiologica. 2009;196(1):155–174. doi: 10.1111/j.1748-1716.2009.01979.x
Содержание Оригинальная статья
Мат. биол. и биоинф.
2019;14(2):373-392
doi: 10.17537/2019.14.373
опубликована на рус. яз.

Аннотация (рус.)
Аннотация (англ.)
Полный текст (рус., pdf)
Список литературы
Доп. материалы

 

  Copyright ИМПБ РАН © 2005-2024