Русская версия English version   
Том 15   Выпуск 1   Год 2020
Онищенко П.С.1,2, Клышников К.Ю.2, Овчаренко Е.А.2

Искусственные нейронные сети в кардиологии: анализ численных и текстовых данных

Математическая биология и биоинформатика. 2020;15(1):40-56.

doi: 10.17537/2020.15.40.

Список литературы

 

  1. Dhingra R., Vasan R.S. Biomarkers in cardiovascular disease: Statistical assessment and section on key novel heart failure biomarkers. Trends in Cardiovascular Medicine. 2017;27(2):123–133. doi: 10.1016/j.tcm.2016.07.005
  2. Kopeva K.V., Grakova E.V., Teplyakov A.T. New biomarkers of heart failure: diagnostic and prognostic value of NT-proBNP and interleukin receptor family member ST2. Complex Issues of Cardiovascular Diseases. 2018;7(1):94–101 (in Russ.). doi: 10.17802/2306-1278-2018-7-1-94-101
  3. Wang J., Tan G.J., Han L.N., Bai Y.Y., He M., Liu H.B. Novel biomarkers for cardiovascular risk prediction. Journal of Geriatric Cardiology. 2017;14(2):135–150.
  4. Pyakurel P., Karki P., Lamsal M., Ghimire A., Pokharel P.K. Cardiovascular risk factors among industrial workers: a cross–sectional study from eastern Nepal. J. Occup. Med. Toxicol. 2016;11:25. doi: 10.1186/s12995-016-0109-6
  5. Kinoshita M., Yokote K., Arai H., Iida M., Ishigaki Y., Ishibashi S., Umemoto S., Egusa G., Ohmura H., Okamura T., Kihara S., Koba S., Saito I., Shoji T., Daida H., Tsukamoto K., Deguchi J., Dohi S., Dobashi K., Hamaguchi H., Hara M., Hiro T., Biro S., Fujioka Y., Maruyama C., Miyamoto Y., Murakami Y., Yokode M., Yoshida H., Rakugi H., Wakatsuki A., Yamashita S. Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2017. J. Atheroscler. Thromb. 2018;25(9):846–84. doi: 10.5551/jat.GL2017
  6. Tabakaev M.V., Artamonova G.V. Urbanization and cardiovascular diseases in modern society. Russ. J. Cardiol. 2015;6(122):94–99.
  7. Studziński K., Tomasik T., Krzysztoń J., Jóźwiak J., Windak A. Effect of using cardiovascular risk scoring in routine risk assessment in primary prevention of cardiovascular disease: protocol for an overview of systematic reviews. BMJ Open. 2017;7(3). doi: 10.1136/bmjopen-2016-014206
  8. Garg N., Muduli S.K., Kapoor A., Tewari S., Kumar S., Khanna R., Goel P.K. Comparison of different cardiovascular risk score calculators for cardiovascular risk prediction and guideline recommended statin uses. Indian Heart Journal. 2017;69(4):458–463. doi: 10.1016/j.ihj.2017.01.015
  9. Jiang F., Jiang Y., Zhi H., Dong Y., Li H., Ma S., Wang Y., Dong Q., Shen H., Wang Y. Artificial intelligence in healthcare: past, present and future. Stroke Vasc. Neurol. 2017;2(4):230–243. doi: 10.1136/svn-2017-000101
  10. Sacchi L., Lanzola G., Viani N., Quaglini S. Personalization and Patient Involvement in Decision Support Systems: Current Trends. Yearb. Med. Inform. 2015;10(1):106–118. doi: 10.15265/IY-2015-015
  11. Miller R.A. Medical diagnostic decision support systems – past, present, and future: a threaded bibliography and brief commentary. J. Am. Med. Inform. Assoc. 1994(1):8–27. doi: 10.1136/jamia.1994.95236141
  12. Tiwari P., Shah N., Samuel E., Shah P., Patel Y., Tiwari P. Clinical decision support systems. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. 2019;5(2):993–995. doi: 10.32628/CSEIT1952264
  13. Ramesh А.N., Kambhampati C., Monson J.R.T., Drew P.J. Artificial intelligence in medicine. Ann. R. Coll. Surg. Engl. 2004;86(5):334–338. doi: 10.1308/147870804290
  14. Medvedev V.S., Potemkin V.G. Neironnye seti. MATLAB 6 (Neural Networks. MATLAB 6). Moscow; 2002. 496 p. (in Russ.).
  15. Herkenhoff L., Fogli J. Applied statistics for business and management using Microsoft Excel. New York: Springer, 2013. doi: 10.1007/978-1-4614-8423-3
  16. Weiß C.H. StatSoft Inc., Tulsa O.K.: STATISTICA, Version 8. Advances in Statistical Analysis. 2007;91(3):339–341. doi: 10.1007/s10182-007-0038-x
  17. Grapov D., Fahrmann J., Wanichthanarak K., Khoomrung S. Rise of deep learning for genomic, proteomic, and metabolomic data integration in precision medicine. OMICS: A Journal of Integrative Biology. 2018;22(10):630–636. doi: 10.1089/omi.2018.0097
  18. Han S.H., Kim K.W., Kim S., Youn Y.C. Artificial neural network: understanding the basic concepts without mathematics. Dement Neurocognitive Disord. 2018;17(3):83–89. doi: 10.12779/dnd.2018.17.3.83
  19. Zharikov O.G., Kovalev V.A., Litvin A.A. Information technologies for the Physician. 2008;5:24–30 (in Russ.).
  20. Goodfellow I., Bengio Y., Courville A. Deep Learning. Cambridge: MIT Press, 2016. 800 p.
  21. Panchal G., Ganatra A., Shah P., Panchal D. Determination of over-learning and over-fitting problem in back propagation neural network. International Journal on Soft Computing. 2011;2(2):40–51. doi: 10.5121/ijsc.2011.2204
  22. Rozykhodzhaeva G.A., Rozykhodzhaeva D.A. Features of formation of training set and training of the neural network with incomplete queries by solving private medical tasks. Scientific Review. Biological science. 2017;5:28–32 (in Russ.).
  23. Choi E., Schuetz A., Stewart W.F., Sun J. Using recurrent neural network models for early detection of heart failure onset. J. Am. Med. Inform. Assoc. 2017;24(2):361–370. doi: 10.1093/jamia/ocw112
  24. Kim J.K., Kang S. Neural Network-Based Coronary Heart Disease Risk Prediction Using Feature Correlation Analysis. J. Healthc. Eng. 2017. doi: 10.1155/2017/2780501
  25. Kalyakulina A.I., Yusipov I.I., Moskalenko V.A., Nikolskiy A.V., Kozlov A.A., Zolotykh N.Yu., Ivanchenko M.V. Finding morphology points of electrocardiographic-signal waves using wavelet analysis. Radiophysics and Quantum Electronics. 2019;61(8–9):689–703. doi: 10.1007/s11141-019-09929-2
  26. Sannino G., De Pietro G. A deep learning approach for ECG-based heartbeat classification for arrhythmia detection. Future Generation Computer Systems. 2018;86:446–455. doi: 10.1016/j.future.2018.03.057
  27. Goldberger A.L., Amaral L.A., Glass L., Hausdorff J.M., Ivanov P.C., Mark R.G., Mietus J.E., Moody G.B., Peng C.-K., Stanley H.E. Physiobank, physiotoolkit, and physionet. Circulation. 2000;101(23). doi: 10.1161/01.CIR.101.23.e215
  28. Moody G.B., Mark R.G. The impact of the MIT-BIH arrhythmia database. IEEE Engineering in Medicine and Biology Magazine. 2001;20(3):45–50. doi: 10.1109/51.932724
  29. Yıldırım Ö., Pławiak P., Tan R.-S., Acharya U.R. Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Computers in biology and medicine. 2018;102:411–420. doi: 10.1016/j.compbiomed.2018.09.009
  30. Moskalenko V., Zolotykh N., Osipov G. Deep Learning for ECG Segmentation. In: International Conference on Neuroinformatics. Eds. Kryzhanovsky В., Dunin-Barkowski W., Redko V., Tiumentsev Yu. Cham: Springer, 2019. P. 246–254.
  31. Moskalenko V.A., Nikolskiy A.V., Zolotykh N.Yu., Kozlov A.A., Kosonogov K.A., Kalyakulina A.I., Yusipov I.I., Levanov V.M. Cyberheart-Diagnostics Software Package for Automated Electrocardiogram Analysis Based on Machine Learning Techniques. Modern Technologies in Medicine. 2019;11(2):86–91. doi: 10.17691/stm2019.11.2.12
  32. Savalia S., Emamian V. Cardiac arrhythmia classification by multi-layer perceptron and convolution neural networks. Bioengineering (Basel). 2018;5(2). doi: 10.3390/bioengineering5020035
  33. Lu P., Guo S., Zhang H., Li Q., Wang Y., Wang Y., Qi L. Research on improved depth belief network-based prediction of cardiovascular diseases. J. Healthc Eng. 2018. doi: 10.1155/2018/8954878
  34. Iftikhar S., Fatima K., Rehman A., Almazyad A.S., Saba T. An evolution based hybrid approach for heart disease classification and associated risk factor identification. Biomedical Research. 2017;28,(8):3451–3455.
  35. Chaurasia V., Pal S. Data Mining Approach to Detect Heart Diseases. International Journal of Advanced Computer Science and Information Technology. 2013;2(4):56–66.
  36. Tison G.H., Sanchez J.M., Ballinger B., Singh A., Olgin J.E., Pletcher M.J., Vittinghoff E., Lee E.S., Fan S.M., Gladstone R.A., Mikell C., Sohoni N., Hsieh J., Marcus G.M. Passive detection of atrial fibrillation using a commercially available smartwatch. JAMA Cardiology. 2018;3(5):409–416. doi: 10.1001/jamacardio.2018.0136
  37. Tsai P.-F., Chen P.-C., Chen Y.-Y., Song H.-Y., Lin H.-M., Lin F.-M., Huang Q.-P. Length of hospital stay prediction at the admission stage for cardiology patients using artificial neural network. J. Healthc. Eng. 2016. doi: 10.1155/2016/7035463
  38. Kutafina E., Bechtold I., Kabino K., Jonas S.M. Recursive neural networks in hospital bed occupancy forecasting. BMC Medical Informatics and Decision Making. 2019;19(39). doi: 10.1186/s12911-019-0776-1
  39. Kwon J.M., Lee Y., Lee Y., Lee S., Park J. An Algorithm Based on Deep Learning for Predicting In-Hospital Cardiac Arrest. J. Am. Heart Assoc. 2018;7(13). doi: 10.1161/JAHA.118.008678
  40. Meyer A., Zverinski D., Pfahringer B, Kempfert J., Kuehne T, Sündermann S.H., Stamm C., Hofmann T., Falk V., Eickhoff C. Machine learning for real-time prediction of complications in critical care: a retrospective study. Lancet Respir. Med. 2018;6(12):905–914. doi: 10.1016/S2213-2600(18)30300-X
  41. Nanayakkara S., Fogarty S., Tremeer M., Ross K., Richards B., Bergmeir C., Xu S., Stub D., Smith K., Tacey M., Liew D., Pilcher D., Kaye D.M. Characterising risk of in-hospital mortality following cardiac arrest using machine learning: A retrospective international registry study. PLoS Med. 2018;15(11). doi: 10.1371/journal.pmed.1002709
  42. Yasnitsky L.N., Cherepanov F.M. Neuro-expert system of diagnostics, forecasting and risk management cardiovascular diseases. Applied Mathematics and Control Sciences. 2018(3):107–126 (in Russ.).
  43. Narain R., Saxena S., Goyal A.K. Cardiovascular risk prediction: a comparative study of Framingham and quantum neural network based approach. Patient Prefer Adherence. 2016(10):1259–1270. doi: 10.2147/PPA.S108203
  44. Kordzadeh A., Esfahlani S.S. The Role of Artificial Intelligence in the Prediction of Functional Maturation of Arteriovenous Fistula. Ann. Vasc. Dis. 2019;12(1):44–49. doi: 10.3400/avd.oa.18-00129
  45. Li H., Luo M., Zheng J., Luo J., Zeng R., Feng N., Du Q., Fang J. An artificial neural network prediction model of congenital heart disease based on risk factors. Medicine (Baltimore). 2017;96(6). doi: 10.1097/MD.0000000000006090
  46. Weng S.F., Reps J., Kai J., Garibaldi J.M., Qureshi N. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS ONE. 2017;12(4). doi: 10.1371/journal.pone.0174944
  47. Stout K.K., Daniels C.J., Aboulhosn J.A., Bozkurt B., Broberg C.S., Colman J.M., Crumb S.R., Dearani J.A., Fuller S., Gurvitz M., Khairy P., Landzberg M.J., Saidi A., Valente A.M., Van Hare G.F. 2018 AHA/ACC guideline for the management of adults with congenital heart disease. Journal of the American College of Cardiology. 2018. doi: 10.1016/j.jacc.2018.08.1029
  48. Sbrollini A., De Jongh M.C., Ter Haar C.C., Treskes R.W., Man S., Burattini L., Swenne C.A. Serial electrocardiography to detect newly emerging or aggravating cardiac pathology: a deep-learning approach. Biomed. Eng. Online. 2019;18(15). doi: 10.1186/s12938-019-0630-9
  49. Sadek S., Al-Hamadi A., Michaelis B., Sayed U. Face detection and localization in color images: an efficient neural approach. Journal of Software Engineering and Applications. 2011;04(12):682–687. doi: 10.4236/jsea.2011.412080
  50. Xiao T., Li S., Wang B., Lin L., Wang X. End-to-end deep learning for person search. arXiv: 1604.01850 [cs.CV]. 2016.
  51. Bin Sulaiman R. Artificial Intelligence Based Autonomous Car. SSRN Electronic Journal. 2018. doi: 10.2139/ssrn.3167638
  52. Shaw P., Williams I. Reuse in practice: the UK’s car and clothing sectors. Detritus: Multidisciplinary journal of waste resources & residues. 2018;04:36–47. doi: 10.31025/2611-4135/2018.13735
  53. IBM Watson. https://www.ibm.com/watson/ (accessed 28 January 2020).
  54. Curioni-Fontecedro A. A new era of oncology through artificial intelligence. ESMO Open. 2017;2(2). doi: 10.1136/esmoopen-2017-000198
  55. Chen Y., Elenee Argentinis J.D., Weber G. IBM Watson: how cognitive computing can be applied to big data challenges in life sciences research. Clin. Ther. 2016;38(4):688–701. doi: 10.1016/j.clinthera.2015.12.001
  56. Hannun A.Y., Rajpurkar P., Haghpanahi M., Tison G.H., Bourn C., Turakhia M.P., Ng A.Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nature Medicine. 2019;25(1):65–69. doi: 10.1038/s41591-018-0268-3
  57. Kańtoch E. Recognition of sedentary behavior by machine learning analysis of wearable sensors during activities of daily living for telemedical assessment of cardiovascular risk. Sensors. 2018;18(10). doi: 10.3390/s18103219
  58. Mena L.J., Félix, V.G., Ochoa A., Ostos R., González E., Aspuru J., Velarde P., Maestre G.E. Mobile personal health monitoring for automated classification of electrocardiogram signals in elderly. Computational and Mathematical Methods in Medicine. 2018;2018:1–9. doi: 10.1155/2018/9128054
  59. Beritelli F., Capizzi G., Lo Sciuto G., Napoli C., Scaglione F. Automatic heart activity diagnosis based on Gram polynomials and probabilistic neural networks. Biomed. Eng. Lett. 2017;8(1):77–85. doi: 10.1007/s13534-017-0046-z
  60. Palomäki A., Hällberg V., Ala-Korpela M., Kovanen P.T., Malminiemi K. Prompt impact of first prospective statin mega-trials on postoperative lipid management of CABG patients: a 20-year follow-up in a single hospital. Lipids Health Dis. 2016;15:124. doi: 10.1186/s12944-016-0292-6
  61. Niemi J., Mäkinen V.-P., Heikkonen J., Tenkanen L., Hiltunen Y., Hannuksela M. L., Jauhiainen M., Forsblom C., Taskinen M.R., Kesäniemi Y.A., Savolainen M.J., Kaski K., Groop P.H., Kovanen P.T., Ala-Korpela M. Estimation of VLDL, IDL, LDL, HDL2, apoA-I, and apoB from the Friedewald inputs––apoB and IDL, but not LDL, are associated with mortality in type 1 diabetes. Annals of Medicine. 2009;41(6):451–461. doi: 10.1080/07853890902893392
  62. Yao J., Tridandapani S., Auffermann W.F., Wick C.A., Bhatti P.T. An adaptive seismocardiography (scg)-ecg multimodal framework for cardiac gating using artificial neural networks. IEEE J. Transl. Eng. Health Med. 2018;6. doi: 10.1109/JTEHM.2018.2869141
  63. Sakr S., Elshawi R., Ahmed A., Qureshi W.T., Brawner C., Keteyian S., Blaha M.J., Al-Mallah M.H. Using machine learning on cardiorespiratory fitness data for predicting hypertension: The Henry Ford ExercIse Testing (FIT) Project. PLoS One. 2018;13(4). doi: 10.1371/journal.pone.0195344
  64. Myers P.D., Scirica B.M., Stultz C.M. Machine learning improves risk stratification after acute coronary syndrome. Sci. Rep. 2017;7. doi: 10.1038/s41598-017-12951-x
Содержание Оригинальная статья
Мат. биол. и биоинф.
2020;15(1):40-56
doi: 10.17537/2020.15.40
опубликована на рус. яз.

Аннотация (рус.)
Аннотация (англ.)
Полный текст (рус., pdf)
Список литературы

 

  Copyright ИМПБ РАН © 2005-2024