Список литературы
- Spudich J.L., Yang C.S., Jung K.H., Spudich E.N. Retinylidene Proteins: Structures and Functions from Archaea to Humans. Annu. Rev. Cell Dev. Biol. 2000;16:365–392. doi: 10.1146/annurev.cellbio.16.1.365
- Helmreich E.J.M., Hofmann K.-P. Structure and function of proteins in G-protein-coupled signal transfer. BBA. 1996;1286(3):285–322. doi: 10.1016/S0304-4157(96)00013-5
- Shichida Y., Matsuyama T. Evolution of opsins and phototransduction. Phil. Trans. R. Soc. B. 2009;364(1531):2881–2895. doi: 10.1098/rstb.2009.0051
- Shichida Y., Imai H. Visual pigment: G-protein-coupled receptor for light signals. Cell. Mol. Life Sci. 1998;54:1299–1315. doi: 10.1007/s000180050256
- Palczewski K. G Protein–Coupled Receptor Rhodopsin. Annual Review of Biochemistry. 2006;75:743–767. doi: 10.1146/annurev.biochem.75.103004.142743
- Menon S.T., Han M., Sakmar T.P. Rhodopsin: Structural Basis of Molecular Physiology. Physiol. Rev. 2001;81:1659–1688. doi: 10.1152/physrev.2001.81.4.1659
- Lamb T., Collin S., Pugh E.N.Jr. Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nat. Rev. Neurosci. 2007;8:960–976. doi: 10.1038/nrn2283
- Rieke F., Baylor D.A. Origin of Reproducibility in the Responses of Retinal Rods to Single Photons. Biophysical Journal. 1998;75(4):1836–1857. doi: 10.1016/S0006-3495(98)77625-8
- Sakmar T.P., Menon S.T., Marin E.P., Awad E.S. Rhodopsin: Insights from Recent Structural Studies. Annual Reviews. 2002;31(1):443-484. doi: 10.1146/annurev.biophys.31.082901.134348
- Yan B., Spudich J.L., Mazur P., Vunnam S., Derguini F., Nakanishi K.J. Spectral Tuning in Bacteriorhodopsin in the Absence of Counterion and Coplanarization Effects. Biol. Chem. 1995;270(50):29668–29670. doi: 10.1074/jbc.270.50.29668
- Liu R.S.H., Krogh E., Li X.-Y., Mead D., Colmenares L.U., Thiel J.R., Ellis J., Wong D., Asato A.E. Analyzing the red-shift characteristics of azulenic, naphthyl, other ring-closed and retinyl pigment analogs of bacteriorhodopsin. Photochem. Photobiol. 1993;58(5):701–705. doi: 10.1111/j.1751-1097.1993.tb04955.x
- Tomasello G.T., Olaso-González G., Altoè P., Stenta M., Serrano-Andrés L., Merchán M., Orlandi G., Bottoni A., Garavelli M. Electrostatic Control of the Photoisomerization Efficiency and Optical Properties in Visual Pigments: On the Role of Counterion Quenching. J. Am. Chem. Soc. 2009;131(14):5172–5186. doi: 10.1021/ja808424b
- Wanko M., Hoffmann M., Frahmcke J., Frauenheim T., Elstner M. Effect of Polarization on the Opsin Shift in Rhodopsins. 2. Empirical Polarization Models for Proteins. J. Phys. Chem. B. 2008;112(37):11468–11478. doi: 10.1021/jp802409k
- Sekharan S., Sugihara M., Buss V. Origin of Spectral Tuning in Rhodopsin – It Is Not the Binding Pocket. Angewandte Chemie International Edition. 2006;46(1–2):269–271. doi: 10.1002/anie.200603306
- Coto P.B., Strambi A., Ferre N., Olivucci M. The color of rhodopsins at the ab initio multiconfigurational perturbation theory resolution. PNAS USA. 2006;103:17154–17159. doi: 10.1073/pnas.0604048103
- Wanko M., Hoffmann M., Strodel P., Koslowski A., Thiel W., Neese F., Frauenheim T., Elstner M. Calculating Absorption Shifts for Retinal Proteins: Computational Challenges. J. Phys. Chem. B. 2005;109(8):3606–3615. doi: 10.1021/jp0463060
- Wanko M., Hoffmann M., Frauenheim T., Elstner M. Computational photochemistry of retinal proteins. J. Comput. Aided Mol. Des. 2006;20:511–518. doi: 10.1007/s10822-006-9069-8
- Birge R.R., Barlow R.B. On the molecular origins of thermal noise in vertebrate and invertebrate photoreceptors. Biophysical Chemistry. 1995;55(1–2):115–126. doi: 10.1016/0301-4622(94)00145-A
- Tavan P., Schulten K., Oesterhelt D. The Effect of Protonation and Electrical Interactions on the Stereochemistry of Retinal Schiff Bases. Biophysical Journal. 1985;47(3):415–430. doi: 10.1016/S0006-3495(85)83933-3
- Birge R.R., Murray L.P., Pierce B.M., Akita H., Balogh-Nair V., Findsen L.A., Nakanishi K. Two-photon spectroscopy of locked-11-cis-rhodopsin: evidence for a protonated Schiff base in a neutral protein binding site. PNAS USA. 1985;82:4117–4121. doi: 10.1073/pnas.82.12.4117
- Matthews G. Dark noise in the outer segment membrane current of green rod photoreceptors from toad retina. The Journal of Physiology. 1984;349(1):607–618. doi: 10.1113/jphysiol.1984.sp015176
- Baylor D.A., Matthews G., Yau K.M. Two components of electrical dark noise in toad retinal rod outer segments. The Journal of Physiology. 1980;309(1):591–621. doi: 10.1113/jphysiol.1980.sp013529
- Polli D., Altoe P., Weingart O., Spillane K.M., Manzoni C., Brida D., Tomasello G., Orlandi G., Kukura P., Mathies R.A., Garavelli M., Cerullo G. Conical intersection dynamics of the primary photoisomerization event in vision. Nature. 2010;467:440–443. doi: 10.1038/nature09346
- Nadtochenko V.A., Smitienko O.A., Feldman T.B., Mozgovaya M.N., Shelaev I.V., Gostev F.E., Sarkisov O.M., Ostrovsky M.A. Conical intersection participation in femtosecond dynamics of visual pigment rhodopsin chromophore cis-trans photoisomerization. Dokl. Biochem. Biophys. 2012;446:242–246. doi: 10.1134/S1607672912050080
- Yabushita A., Kobayashi T., Tsuda M. Time-resolved spectroscopy of ultrafast photoisomerization of octopus rhodopsin under photoexcitation. J. Phys. Chem. B. 2012;116:1920–1926. doi: 10.1021/jp209356s
- Peteanu L.A., Schoenlein R.W., Wang Q., Mathies R.A., Shank C.V. The first step in vision occurs in femtoseconds: complete blue and red spectral studies. Proc. Natl. Acad. Sci. USA. 1993;90:11762–11766. doi: 10.1073/pnas.90.24.11762
- Mizukami T., Kandori H., Shichida Y., Chen A.-H., Derguini F., Caldwell C.G., Biffe C., Nakanishi K., Yoshizawa T. Photoisomerization mechanism of the rhodopsin chromophore: picosecond photolysis of pigment containing 11-cis-locked eight-membered ring retinal. Proc. Natl. Acad. Sci. USA. 1993;90:4072–4076. doi: 10.1073/pnas.90.9.4072
- Kandori H., Matuoka S., Shichida Y., Yoshizawa T., Ito M., Tsukida K., Balogh-Nair V., Nakanishi K. Mechanism of isomerisation of rhodopsin studied by use of 11-cis-locked rhodopsin analogues excited with a picoseconds laser pulse. Biochemistry. 1989;28:6460–6467. doi: 10.1021/bi00441a045
- Schoenlein R.W., Peteanu L.A., Mathies R.A., Shank C.V. The first step in vision: femtosecond isomerization of rhodopsin. Science. 1991;254:412–415. doi: 10.1126/science.1925597
- Dartnall H.J. The photosensitivities of visual pigments in the presence of hydroxylamine. Vision Res. 1968;8:339–358. doi: 10.1016/0042-6989(68)90104-1
- Tittor J., Oesterhelt D. The quantum yield of bacteriorhodopsin. FEBS Letters. 1990;263(2):269–273. doi: 10.1016/0014-5793(90)81390-A
- Furutani Y., Terakita A., Shichida Y., Kandori H. FTIR Studies of the Photoactivation Processes in Squid Retinochrome. Biochemistry. 2005;44(22):7988–7997. doi: 10.1021/bi050219w
- Matsuyama T., Yamashita T., Imamoto Y., Shichida Y. Photochemical Properties of Mammalian Melanopsin. Biochemistry. 2012;51(27):5454–5462. doi: 10.1021/bi3004999
- Smitienko O., Nadtochenko V., Feldman T., Balatskaya M., Shelaev I., Gostev F., Sarkisov O., Ostrovsky M. Femtosecond laser spectroscopy of the rhodopsin photochromic reaction: a concept for ultrafast optical molecular switch creation (ultrafast reversible photoreaction of rhodopsin). Molecules. 2014;19:18351–18366. doi: 10.3390/molecules191118351
- Yan M., Rothberg L., Callender R. Femtosecond Dynamics of Rhodopsin Photochemistry Probed by a Double Pump Spectroscopic Approach. J. Phys. Chem. B. 2001;105(4):856–859 doi: 10.1021/jp002036j
- Bazhenov V., Schmidt P., Atkinson G.H., Nanosecond photolytic interruption of bacteriorhodopsin photocycle: K-590 – BR-570 reaction. Biophysical Journal. 1992;61(6):1630–1637. doi: 10.1016/S0006-3495(92)81966-5
- Govindjee R., Balashov S.P., Ebrey T.G. Quantum efficiency of the photochemical cycle of bacteriorhodopsin. Biophys. J. 1990;58:597–608. doi: 10.1016/S0006-3495(90)82403-6
- Birge R.R., Cooper T.M., Lawrence A.F., Masthay M.B., Vasilakis C., Zhang C.F., Zidovetzki R. A spectroscopic, photocalorimetric, and theoretical investigation of the quantum efficiency of the primary event in bacteriorhodopsin. J. Am. Chem. Soc. 1989;111(11):4063–4074. doi: 10.1021/ja00193a044
- Suzuki T., Callender R.H. Primary photochemistry and photoisomerization of retinal at 77 degrees K in cattle and squid rhodopsins. Biophys. J. 1981;34:261–270. doi: 10.1016/S0006-3495(81)84848-5
- Hurley J., Ebrey T., Honig B., Ottolenghi M. Temperature and wavelength effects on the photochemistry of rhodopsin, isorhodopsin, bacteriorhodopsin and their photoproducts. Nature. 1977;270:540–542. doi: 10.1038/270540a0
- Kim J.E., Tauber M.E., Mathies R.A. Wavelength Dependent Cis-Trans Isomerization in Vision. Biochemistry. 2001;40(46):13774–13778. doi: 10.1021/bi0116137
- Wang Q., Schoenlein R.W, Peteanu L.A., Mathies R.A., Shank C.V. Vibrationally coherent photochemistry in the femtosecond primary event of vision. Science. 1994;266:422–424. doi: 10.1126/science.7939680
- Johnson P.J.M., Halpin A., Morizumi T., Prokhorenko V.I., Ernst O.P., Miller R.J.D. Local vibrational coherences drive the primary photochemistry of vision. Nat. Chem. 2015;7:980–986. doi: 10.1038/nchem.2398
- Schnedermann C., Liebel M., Kukura P. Mode-specificity of vibrationally coherent internal conversion in rhodopsin during the primary visual event. J. Am. Chem. Soc. 2015;137:2886–2891. doi: 10.1021/ja508941k
- Smitienko O.A., Mozgovaya M.N., Shelaev I.V., Gostev F.E., Feldman T.B., Nadtochenko V.A., Sarkisov O.M., Ostrovsky M.A. Femtosecond formation dynamics of primary photoproducts of visual pigment rhodopsin. Biochemistry (Moscow). 2010;75:25–35. doi: 10.1134/S0006297910010049
- Worth G.A., Cederbaum L.S. Beyond Born-Oppenheimer: molecular dynamics through a conical intersection. Annu. Rev. Phys. Chem. 2004;55:127–158. doi: 10.1146/annurev.physchem.55.091602.094335
- Kochendoerfer G.G., Mathies R.A. Spontaneous emission study of the femtosecond isomerization dynamics of rhodopsin. J. Phys. Chem. 1996;100:14526–14532. doi: 10.1021/jp960509
- Doukas A.G., Junnarkar M.R., Alfano R.R., Callender R.H., Kakitani T., Honig B. Fluorescence quantum yield of visual pigments: evidence for subpicosecond isomerization rates. PNAS USA. 1984;81:4790–4794. doi: 10.1073/pnas.81.15.4790
- Guzzo A.V., Pool G.L. Visual Pigment Fluorescence. Science. 1968;159(3812):312–314. doi: 10.1126/science.159.3812.312
- Polli D., Rivalta I., Nenov A., Weingart O., Garavelli M., Cerullo G. Tracking the primary photoconversion events in rhodopsins by ultrafast optical spectroscopy. Photochem. Photobiol. Sci. 2015;14:213–228. doi: 10.1039/c4pp00370e
- Tscherbul T.V., Brumer P. Quantum coherence effects in natural light-induced processes: cis–trans photoisomerization of model retinal under incoherent excitation. Phys. Chem. Chem. Phys. 2015;17:30904–30913. doi: 10.1039/C5CP01388G
- Rivalta I., Nenov A., Weingart O., Cerullo G., Garavelli M., Mukamel S. Modelling time-resolved two-dimensional electronic spectroscopy of the primary photoisomerization event in rhodopsin. J. Phys. Chem. B. 2014;118:8396–8405. doi: 10.1021/jp502538m
- Warshel A. Multiscale modeling of biological functions: from enzymes to molecular machines (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 2014;53(38):10020–10031. doi: 10.1002/anie.201403689
- Chung W.C., Nanbu S., Ishida T. QM/MM trajectory surface hopping approach to photoisomerization of rhodopsin and isorhodopsin: the origin of faster and more efficient isomerization for rhodopsin. J. Phys. Chem. B. 2012;116:8009–8023. doi: 10.1021/jp212378u
- Weingart O., Garavelli M. Modelling vibrational coherence in the primary rhodopsin photoproduct. J. Chem. Phys. 2012;137:22A523. doi: 10.1063/1.4742814
- Schapiro I., Ryazantsev M.N., Frutos L.M., Ferre N., Lindh R., Olivucci M. The ultrafast photoisomerizations of rhodopsin and bathorhodopsin are modulated by bond length alternation and HOOP driven electronic effects. J. Am. Chem. Soc. 2011;133:3354–3364. doi: 10.1021/ja1056196
- Weingart O., Altoe P., Stenta M., Bottoni A., Orlandi G., Garavelli M. Product formation in rhodopsin by fast hydrogen motions. Phys. Chem. Chem. Phys. 2011;13:3645–3648. doi: 10.1039/c0cp02496a
- Abe M., Ohtsuki Y., Fujimura Y., Domcke W. Optimal control of ultrafast cis-trans photoisomerization of retinal in rhodopsin via a conical intersection. J. Chem. Phys. 2005;123:144508. doi: 10.1063/1.2034488
- Gonzalez-Luque R., Garavelli M., Bernardi F., Merchan M., Robb M.A., Olivucci M. Computational evidence in favor of a two-state, two-mode model of the retinal chromophore photoisomerization. Proc. Natl. Acad. Sci. USA. 2000;97:9379–9384. doi: 10.1073/pnas.97.17.9379
- Callender R. Resonance raman techniques for photolabile samples: Pump-probe and flow. Methods in Enzymology. 1982;88:625–633. doi: 10.1016/0076-6879(82)88077-4
- Yoshizawa T., Shichida Y. Low-temperature spectrophotometry of intermediates of rhodopsin. Methods in Enzymology. 1982;81:333–354. doi: 10.1016/S0076-6879(82)81051-3
- Kawamura S., Tokunaga F., Yoshizawa T., Sarai A., Kakitani T. Orientational changes of the transition dipole moment of retinal chromophore on the disk membrane due to the conversion of rhodopsin to bathorhodopsin and to isorhodopsin. Vision Research. 1979;19(8):879–884. doi: 10.1016/0042-6989(79)90021-X
- Honig B., Karplus M. Implications of torsional potential of retinal isomers for visual excitation. Nature. 1971;229:558–560. doi: 10.1038/229558a0
- Kim J.E., Mathies R.A. Anti-stokes Raman study of vibrational cooling dynamics in the primary photochemistry of rhodopsin. J. Phys. Chem. A. 2002;106:8508–8515. doi: 10.1021/jp021069r
- Lin S.W., Groesbeek M., van der Hoef I., Verdegem P., Lugtenburg J., Mathies R.A. Vibrational assignment of torsional normal modes of rhodopsin: probing excited-state isomerization dynamics along the reactive C11=C12 torsion coordinate. J. Phys. Chem. B. 1998;102:2787–2806. doi: 10.1021/jp972752u
- Birge R.R. Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin. BBA – Bioenergetics. 1990;1016(3):293–327. doi: 10.1016/0005-2728(90)90163-X
- Loppnow G., Mathies R. Excited-state structure and isomerization dynamics of the retinal chromophore in rhodopsin from resonance Raman intensities. Biophysical Journal. 1988;54:35–43. doi: 10.1016/S0006-3495(88)82928-X
- Palings I., Van den Berg E.M.M., Lugtenburg J., Mathies R.A. Complete assignment of the hydrogen out-of-plane wagging vibrations of bathorhodopsin: chromophore structure and energy storage in the primary photoproduct of vision. Biochemistry. 1989;28(4):1498–1507. doi: 10.1021/bi00430a012
- Eyring G., Mathies R.A. Resonance Raman studies of bathorhodopsin: Evidence for a protonated Schiff base linkage. PNAS USA. 1979;76:33–37. doi: 10.1073/pnas.76.1.33
- Röhrig U.F., Guidoni L., Laio A., Frank I., Rothlisberger U. A Molecular Spring for Vision. J. Am. Chem. Soc. 2004;126:15328–15329. doi: 10.1021/ja048265r
- Nakamichi H., Okada T. Local peptide movement in the photoreaction intermediate of rhodopsin. PNAS USA. 2006;103:12729–12734. doi: 10.1073/pnas.0601765103
- Okada T., Le Trong I., Fox B.A., Behnke C.A., Stenkamp R.E., Palczewski K. X-Ray Diffraction Analysis of Three-Dimensional Crystals of Bovine Rhodopsin. Journal of Structural Biology. 2000;130(1):73-80. doi: 10.1006/jsbi.1999.4209
- Nakamichi H., Okada T. Crystallographic analysis of primary visual photochemistry. Angew. Chem. Int. Ed. 2006;45:4270–4273. doi: 10.1002/anie.200600595
- Palczewski K., Kumasaka T., Hori T., Behnke C.A., Motoshima H., Fox B.A., Trong I.L., Teller D.C., Okada T., Stenkamp R.E., Yamamoto M., Miyano M. Crystal structure of rhodopsin: a G protein-coupled receptor. Science. 2000;289:739–745. doi: 10.1126/science.289.5480.739
- Cooper A. Energy uptake in the first step of visual excitation. Nature. 1979;282:531–533. doi: 10.1038/282531a0
- Nishioku Y., Nakagawa M., Tsuda M., Terazima M. Energetics and Volume Changes of the Intermediates in the Photolysis of Octopus Rhodopsin at a Physiological Temperature. Biophysical Journal. 2002;83:1136–1146. doi: 10.1016/S0006-3495(02)75237-5
- Sekharan S., Morokuma K. Why 11-cis-Retinal? Why Not 7-cis-, 9-cis-, or 13-cis-Retinal in the Eye? J. Am. Chem. Soc. 2011;133(47):19052–19055. doi: 10.1021/ja208789h
- Li X., Chung L.W., Morokuma K. Photodynamics of All-trans Retinal Protonated Schiff Base in Bacteriorhodopsin and Methanol Solution. J. Chem. Theory Comput. 2011;7:2694–2698. doi: 10.1021/ct200549z
- Hayashi S., Tajkhorshid E., Schulten K. Photochemical Reaction Dynamics of the Primary Event of Vision Studied by Means of a Hybrid Molecular Simulation. Biophysical Journal. 2009;96(2):403–416. doi: 10.1016/j.bpj.2008.09.049
- Strambi A., Coto P.B., Frutos L.M., Ferre N., Olivucci M. Relationship between the Excited State Relaxation Paths of Rhodopsin and Isorhodopsin. J. Am. Chem. Soc. 2008;130:3382–3388. doi: 10.1021/ja0749082
- Frutos L.M., Andruniow T., Santoro F., Olivucci M. Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry. PNAS USA. 2007;104:7764–7769. doi: 10.1073/pnas.0701732104
- Sugihara M., Hufen J., Buss V. Origin and Consequences of Steric Strain in the Rhodopsin Binding Pocket. Biochemistry. 2006;45:801–810. doi: 10.1021/bi0515624
- Gascon J.A., Sproviero E.M., Batista V.S. Computational Studies of the Primary Phototransduction Event in Visual Rhodopsin. Acc. Chem. Res. 2006;39:184–193. doi: 10.1021/ar050027t
- Garavelli M. Computational Organic Photochemistry: Strategy, Achievements and Perspectives. Theor. Chem. Acc. 2006;116:87–105. doi: 10.1007/s00214-005-0030-z
- Cembran A., Bernardi F., Olivucci M., Garavelli M. The retinal chromophore/chloride ion pair: Structure of the photoisomerization path and interplay of charge transfer and covalent states. PNAS USA. 2005;102:6255–6260. doi: 10.1073/pnas.0408723102
- Cembran A., Bernardi F., Olivucci M., Garavelli M. Counterion Controlled Photoisomerization of Retinal Chromophore Models: a Computational Investigation. J. Am. Chem. Soc. 2004;126:16018–16037. doi: 10.1021/ja048782+
- Gascon J.A., Batista V.S. QM/MM Study of Energy Storage and Molecular Rearrangements Due to the Primary Event in Vision. Biophysical Journal. 2004;87(5):2931–2941. doi: 10.1529/biophysj.104.048264
- Hayashi S., Tajkhorshid E., Schulten K. Molecular Dynamics Simulation of Bacteriorhodopsin's Photoisomerization Using Ab Initio Forces for the Excited Chromophore. Biophysical Journal. 2003;85(3):1440–1449. doi: 10.1016/S0006-3495(03)74576-7
- Warshel A., Chu Z.T. Nature of the Surface Crossing Process in Bacteriorhodopsin: Computer Simulations of the Quantum Dynamics of the Primary Photochemical Event. J. Phys. Chem. B. 2001;105:9857–9871. doi: 10.1021/jp010704a
- Hahn S., Stock G. Quantum-Mechanical Modeling of the Femtosecond Isomerization in Rhodopsin. J. Phys. Chem. B. 2000;104:1146–1149. doi: 10.1021/jp992939g
- Yoshizawa T., Kito Y. Chemistry of the Rhodopsin Cycle. Nature. 1958;182:1604–1605. doi: 10.1038/1821604a0
- Yoshizawa T., Wald G. Pre-Lumirhodopsin and the Bleaching of Visual Pigments. Nature. 1963;197:1279–1286. doi: 10.1038/1971279a0
- Hug S.J., Lewis J.W., Einterz C.M., Thorgeirsson T.E., Kliger D.S. Nanosecond photolysis of rhodopsin: evidence for a new blue-shifted intermediate. Biochemistry. 1990;29:1475–1485. doi: 10.1021/bi00458a019
- Busch G.E., Applebury M.L., Lamola A.A., Rentzepis P.M. Formation and Decay of Prelumirhodopsin at Room Temperatures. PNAS USA. 1972;69:2802–2806. doi: 10.1073/pnas.69.10.2802
- Peters K., Applebury M.L., Rentzepis P.M. Primary photochemical event in vision: proton translocation. PNAS USA. 1977;74:3119–3123. doi: 10.1073/pnas.74.8.3119
- Fukada Y., Shichida Y., Yoshizawa T., Ito M., Kodama A., Tsukida K. Studies on structure and function of rhodopsin by use of cyclopentatrienylidene 11-cis-locked-rhodopsin. Biochemistry. 1984;23:5826–5832. doi: 10.1021/bi00319a023
- Buchert J., Stefancic V., Doukas A.G., Alfano R.R., Callender R.H., Pande J., Akita H., Balogh-Nair V., Nakanishi K. Picosecond kinetic absorption and fluorescence studies of bovine rhodopsin with a fixed 11-ene. Biophys. J. 1983;43:279–283. doi: 10.1016/S0006-3495(83)84351-3
- Mao B., Tsuda M., Ebrey T.G., Akita H., Balogh-Nair V., Nakanishi K. Flash photolysis and low temperature photochemistry of bovine rhodopsin with a fixed 11-ene. Biophys. J. 1981;35:543–546. doi: 10.1016/S0006-3495(81)84809-6
- Levine B.G., Martinez T.M. Isomerization through conical intersections. Annu. Rev. Phys. Chem. 2007;58:613–634. doi: 10.1146/annurev.physchem.57.032905.104612
- Hahn S., Stock G. Femtosecond secondary emission arising from the nonadiabatic photoisomerization in rhodopsin. Chemical Physics. 2000;259(2–3):297–312. doi: 10.1016/S0301-0104(00)00201-9
- Hahn S., Stock G. Ultrafast cis-trans photoswitching: A model study. J. Chem. Phys. 2002;116:1085–1091. doi: 10.1063/1.1428344
- Liu R.S., Yang L.Y., Liu J. Mechanisms of photoisomerization of polyenes in confined media: from organic glasses to protein binding cavities. Photochem. Photobiol. 2007;83:2–10. doi: 10.1562/2006-01-27-RA-786
- Kukura P., McCamant D.W., Yoon S., Wandschneider D.B., Mathies R.A. Structural Observation of the Primary Isomerization in Vision with Femtosecond-Stimulated Raman. Science. 2005;310(5750):1006–1009. doi: 10.1126/science.1118379
- Lemaitre V., Yeagle P., Watts A. Molecular dynamics simulations of retinal in rhodopsin: from the dark-adapted state towards lumirhodopsin. Biochemistry. 2005;44:12667–12680. doi: 10.1021/bi0506019
- Andruniow T., Ferre N., Olivucci M. Structure, initial excited-state relaxation, and energy storage of rhodopsin resolved at the multiconfigurational perturbation theory level. PNAS USA. 2004;101:17908–17913. doi: 10.1073/pnas.0407997101
- Borhan B., Soutu M.L., Imai H., Shichida Y., Nakanishi K. Movement of retinal along the visual transduction path. Science. 2000;288:2209–2212. doi: 10.1126/science.288.5474.2209
- Liu R.S.H. Photoisomerization by hula-twist: a fundamental supramolecular photochemical reaction. Acc. Chem. Res. 2001;34:555–562. doi: 10.1021/ar000165c
- Smith S.O., Courtin J., de Groot H.J.M., Gebhard M., Lugtenburg J. 13C magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of rhodopsin. Biochemistry. 1991;30:7409–7415. doi: 10.1021/bi00244a007
- Isin B., Schulten K., Tajkhorshid E., Bahar I. Mechanism of signal propagation upon retinal isomerization: insights from molecular dynamics simulations of rhodopsin restrained by normal modes. Biophys. J. 2008;95:789–803. doi: 10.1529/biophysj.107.120691
- Yamada A., Yamato T., Kakitani T., Yamamoto S. Torsion potential works in rhodopsin. Photochem. Photobiol. 2007;79:476–486. doi: 10.1111/j.1751-1097.2004.tb00037.x
- Kholmurodov Kh.T., Feldman T.B., Ostrovsky M.A. Visual pigment rhodopsin: molecular dynamics of 11-cis-retinal chromophore and amino-acid residues in the chromophore center. Computer simulation study, Mendeleev Comm. 2006;1:1–8. doi: 10.1070/MC2006v016n01ABEH002255
- Saam J., Tajkhorshid E., Hayashi S., Schulten K. Molecular dynamics investigation of primary photoinduced events in the activation of rhodopsin. Biophys. J. 2002;83:3097–3112. doi: 10.1016/S0006-3495(02)75314-9
- Ganter U.M., Schmid E.D., Perez-Sala D., Rando R.R., Siebert F. Removal of the 9-methyl group of retinal inhibits signal transduction in the visual process. A Fourier transform infrared and biochemical investigation. Biochemistry. 1989;28:5954–5962. doi: 10.1021/bi00440a036
- Han M., Groesbeek M., Smith S.O., Sakmar T.P. Role of the C9 methyl group in rhodopsin activation: characterization of mutant opsins with the artificial chromophore 11-cis-9-demethylretinal. Biochemistry. 1998;37:538–545. doi: 10.1021/bi972060w
- Meyer C.K., Bohme M., Ockenfels A., Gartner W., Hofmann K.P, Ernst O.P. Signaling states of rhodopsin. Retinal provides a scaffold for activating proton transfer switches. J. Biol. Chem. 2000;275:19713–19718. doi: 10.1074/jbc.M000603200
- Kochendoerfer G.G., Verdegem P.J.E., van der Hoef I., Lugtenburg J., Mathies R.A. Retinal Analog Study of the Role of Steric Interactions in the Excited State Isomerization Dynamics of Rhodopsin. Biochemistry. 1996;35:16230–16240. doi: 10.1021/bi961951l
- Lakhno V.D., Shigaev A.S., Feldman T.B., Ostrovsky M.A., Nadtochenko V.A. Quantum-classical model of retinal photoisomerization reaction in visual pigment rhodopsin. Doklady Biochemistry and Biophysics. 2016;471(1):435-439. doi: 10.1134/S1607672916060168
- Shigaev A.S., Feldman T.B., Nadtochenko V.A., Ostrovsky M.A., Lakhno V.D. Investigation of Rhodopsin Chromophore Photoisomerization Based on the Quantum-Classical Model. Mathematical Biology and Bioinformatics. 2018;13(1):169–186 (in Russ.). doi: 10.17537/2018.13.169
- Shigaev A.S., Feldman T.B., Nadtochenko V.A., Ostrovsky M.A., Lakhno V.D. Quantum-classical modeling of rhodopsin photoisomerization: Keldysh Institute Preprints. 2018. № 27. doi: 10.20948/prepr-2018-27-e
- Shigaev A.S., Feldman T.B., Nadtochenko V.A., Ostrovsky M.A., Lakhno V.D. Quantum-classical model of the rhodopsin retinal chromophore cis–trans photoisomerization with modified inter-subsystem coupling. Computational and Theoretical Chemistry. 2020;1181. Article No. 112831. doi: 10.1016/j.comptc.2020.112831
- Holstein T. Studies of polaron motion: Part I. The molecular-crystal model. Ann. Phys. 1959;8:325–342. doi: 10.1016/0003-4916(59)90002-8
- Davydov A.S. The theory of contraction of proteins under their excitation. J. Theor. Biology. 1973;38:559–569. doi: 10.1016/0022-5193(73)90256-7
- Davydov A.S. Solitons and energy transfer along protein molecules. J. Theor. Biology. 1977;66:379–387. doi: 10.1016/0022-5193(77)90178-3
- Physics in One Dimension. Ed. Bernassoni J. Springer-Verlag, 1981. (Springer series in solid-state sciences. Vol. 23). ISBN: 978-3-642-81592-8.
- Okahata Y., Kobayashi T., Tanaka K., Shimomura M.J. Anisotropic Electric Conductivity in an Aligned DNA Cast Film. J. Am. Chem. Soc. 1998;120:6165–6166. doi: 10.1021/ja980165w
- Modern Methods for Theoretical Physical Chemistry of Biopolymers. Eds. Starikov E.B., Lewis J.P., Tanaka S. Elsevier, 2006. ISBN: 9780080461014.
- Cramer T., Steinbrecher T., Labahn A., Koslowski T. Static and dynamic aspects of DNA charge transfer: a theoretical perspective. Phys. Chem. Chem. Phys. 2005;7:4039–4050. doi: 10.1039/b507454a
- Lakhno V.D. Oscilations in the primary charge separation in bacterial photosynthesis. Phys. Chem. Chem. Phys. 2002;4:2246–2250. doi: 10.1039/b102700j
- Lakhno V.D. Dynamical theory of primary processes of charge separation in the photosynthetic reaction center. J. Biol. Phys. 2005;31:145–159. doi: 10.1007/s10867-005-5109-1
- Komineas S., Kalosakas G., Bishop A.R. Effects of intrinsic base-pair fluctuations on charge transport in DNA. Phys. Rev. E. 2002;65:061905. doi: 10.1103/PhysRevE.65.061905
- Maniadis P., Kalosakas G., Rasmussen K.O., Bishop A.R. AC conductivity in a DNA charge transport model. Phys. Rev. E. 2005;72:021912. doi: 10.1103/PhysRevE.72.021912
- Diaz E., Lima R.P.A., Dominguez-Adame F. Bloch-like oscillations in the Peyrard-Bishop-Holstein model. Phys. Rev. B. 2008;78:134303. doi: 10.1103/PhysRevB.78.134303
- Lakhno V.D., Sultanov V.B., Montgomery Pettitt B. Combined hopping–superexchange model of a hole transfer in DNA. Chem. Phys. Lett. 2004;400:47–53. doi: 10.1016/j.cplett.2004.10.077
- Shigaev A.S., Ponomarev O.A., Lakhno V.D. A new approach to microscopic modeling of a hole transfer in heteropolymer DNA. Chem. Phys. Lett. 2011;513:276–279. doi: 10.1016/j.cplett.2011.07.080
- Korshunova A.N., Lakhno V.D. A new type of localized fast moving electronic excitations in molecular chains. Physica E. 2014;60:206–209. doi: 10.1016/j.physe.2014.02.025
- Fialko N.S., Lakhno V.D. Nonlinear dynamics of excitations in DNA. Phys. Lett. A. 2000;278:108–112. doi: 10.1016/S0375-9601(00)00755-6
- Liu J., Liu M.Y., Nguyen J.B., Bhagat A., Mooney V., Yan E.C.Y. Thermal Decay of Rhodopsin: Role of Hydrogen Bonds in Thermal Isomerization of 11-cis Retinal in the Binding Site and Hydrolysis of Protonated Schiff Base. J. Am. Chem. Soc. 2009;131:8750–8751. doi: 10.1021/ja903154u
- Okada T., Sugihara M., Bondar A.-N., Elstner M., Entel P., Buss V. The Retinal Conformation and its Environment in Rhodopsin in Light of a New 2.2A Crystal Structure. Journal of Molecular Biology. 2004;342(2):571–583. doi: 10.1016/j.jmb.2004.07.044
- Palczewski K., Kumasaka T., Hori T., Behnke C.A., Motoshima H., Fox B.A., Le Trong I., Teller D.C., Okada T., Stenkamp R.E., Yamamoto M., Miyano M. Crystal Structure of Rhodopsin: A G Protein-Coupled Receptor. Science. 2000;289(5480):739–745. doi: 10.1126/science.289.5480.739
- Nagata T., Terakita A., Kandori H., Shichida Y., Maeda A. The Hydrogen-Bonding Network of Water Molecules and the Peptide Backbone in the Region Connecting Asp83, Gly120, and Glu113 in Bovine Rhodopsin. Biochemistry. 1998;37:17216–17222. doi: 10.1021/bi9810149
- Nagata T., Terakita A., Kandori H., Kojima D., Shichida Y., Maeda A. Water and Peptide Backbone Structure in the Active Center of Bovine Rhodopsin. Biochemistry. 1997;36:6164–6170. doi: 10.1021/bi962920t
|
|
|