Русская версия English version   
Том 6   Выпуск 2   Год 2011
Быстров В.С., Парамонова Е.В., Дехтяр Ю.Д., Каташев А., Поляка Н., Быстрова А.В., Сапронова А.В., Фридкин В.М., Клим Г., Холкин А.Л.

Компьютерное моделирование свойств ПВДФ и П(ВДФ-ТрФЭ) нанопленок при фазовом переходе и эмиссионная cпектроскопия их поляризации

Математическая биология и биоинформатика. 2011;6(2):273-297.

doi: 10.17537/2011.6.273.

Список литературы

  1. Blinov L, Fridkin V, Palto S, Bune A, Dowben P, Ducharme S. Physics-Uspekhi. 2000;43(3):243-257. doi: 10.1070/PU2000v043n03ABEH000639
  2. Bune AV, Fridkin VM, Ducharme S, Blinov LM, Palto SP, Sorokin AV, Yudin SG, Zlatkin A. Nature (London). 1998;391:874. doi: 10.1038/36069
  3. Qu H, Yao W, Zhang J, Dusharme S, Dowben PA, Sorokin AV, Fridkin VM. Appl. Phys. Lett. 2003;82:4322-4324.
  4. Kliem H, Tardos-Morgane R. J. Phys. D: Appl. Phys. 2005;38:1860-1868.
  5. Tadros-Morgane R, Kliem H. J. Phys. D: Appl. Phys. 2006;39:4872-4877.
  6. Gruverman A, Kholkin A. Rep. Prog. Phys. 2006;69:2443-2474.
  7. Tolstousov A, Gaynutdinov R, Tadros-Morgane R, Judin S, Tolstikhina A, Kliem H, Ducharme S, Fridkin V. Ferroelectrics. 2007;354:99-105. doi: 10.1080/00150190701454669
  8. Li D, Bonneli DA. Ferroelectric Lithography. In: Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale. Kalinin SV and Gruverman A Eds. New York: Springer, 2007:906-928.
  9. Rodriguez B, Jesse S, Baddorf A, Kalinin S. Phys. Rev. Lett. 2006;96:237602. doi: 10.1103/PhysRevLett.96.237602
  10. Rodrigeuz BJ, Jesse S, Kalinin S, Kim J, Ducharme S, Fridkin VM. Appl. Phys. Lett. 2007;90:122904.
  11. Bystrov VS, Bdikin IK, Kiselev DA, Yudin SG, Fridkin VM, Kholkin AL. J. Phys. D: Appl. Phys. 2007;40:4571-4577.
  12. Kang SJ, Bae I, Shin YJ, Park YJ, Huh J, Park S-M., Kim H-C, Park C. NANO Letters. 2011;11:138-144. doi: 10.1021/nl103094e
  13. Egusa S, Wang Z, Chocat N, Ruff ZM, Stolyarov AM, Shemuly D, Sorin F, Rakich PT, Joannopoulos JD, Fink Y. Nature Materials. 2010:643-648. doi: 10.1038/NMAT2792. doi: 10.1038/nmat2792
  14. Hu Z, Tian M, Nysten B, Jonas AM. Nature Materials. 2009;8:62-67. doi: 10.1038/nmat2339
  15. Amer S, Badawy W. Current Pharmaceutical Biotechnology. 2005;6:57.
  16. Bystrov VS, Bystrova NK, Paramonova EV, Vizdrik G, Sapronova AV, Kuehn M, Kliem H, Kholkin AL. J. Phys: Condens. Matter. 2007;19:456210.
  17. Bystrov V, Bystrova N, Kiselev D, Paramonova E, Kuehn M, Kliem H, Kholkin A. Integrated Ferroelectrics. 2008;99:31-40. doi: 10.1080/10584580802107510
  18. Hereida A, Machado M, Bdikin I, Gracio J, Yudin S, Fridkin VM, Delgadillo I, Kholkin AL. J. Phys. D: Appl. Phys. 2010;43(33):335301.
  19. Callegari B, Belangero WD. Analysis of the interface formed among the poli(viniilidene) fluoride (piezoelectric and nonpiezoelectric) and the bone tissue of rats. Acta Ortop.Bras. 2004;12(3):160-166.
  20. Mehta R. The hip gets smart. Materials World Magazine, 01 Apr 2010. Available at: http://www.iom3.org/news/hip-and-smart-biomaterials (accessed 17 July 2011).
  21. Bystrov VS, Bystrova NK, Paramonova EV, Dekhtyar YuD. Interaction of charged hydroxyapatite and living cells. I. Hydroxyapatite polarization properties. Mathematical biology and bioinformatics. 2009;4(2):7-11. Available at: http://www.matbio.org/downloads_en/Bystrov_en2009(4_7).pdf (accessed 17 July 2011).
  22. PERCERAMICS. Available at: http://www.perceramics.vip.lv/ (accessed 17 July 2011).
  23. Dekhtyar Yu, Bystrov V, Khlusov I, Polyaka N, Sammons R, Tyulkin F. Hydroxyapatite Surface Nanoscaled characterization and Electrical Potential F Functionalization to Engineer Osteoblasts Attachment and Generate Bone Tissue. In: The Society For Biomaterials 2011 Annual Meeting & Exposition (April 13-16, 2011, Orlando, Florida, USA). A 519.
  24. Lines ME, Glass AM. Principles and Applications of Ferroelectrics and Related Materials. Clarendon Press: Oxford, 1979.
  25. Minc RI, Mil’man II, Kryuk VI. Physics-Uspekhi (Russian). 1976;19(8):697-707.
  26. Dekhtyar YuD, Vinyarskaya YuA. Exoelectron analysis of amorphous silicon. J. Appl. Phys. 1994;75(8):4201-4207.
  27. Dekhtyar YuD Photo-, dual- and exoelectron spectroscopy to characterize nanostructures. In: Functionalized Nanoscale Materials, Devices and Systems NATO Science for Peace and Security Series B: Physics and Biophysics. Vaseashta A, Mihailescu IN. Eds. Springer Science + Business Media B, 2008:169-183.
  28. Marcus MA. Ferroelectrics. 1982;40:29-41. doi: 10.1080/00150198208210593
  29. Furukawa T. Ferroelectrics. 1984;57:63-72. doi: 10.1080/00150198408012752
  30. Kimura K, Ohigashi H. Jpn. J. Appl. Phys. 1986;25:383.
  31. Newnham RE, Sundar V, Yumnirun R, Su J, Zhang QM. J. Phys. Chem. B. 1997;101:10141-10150.
  32. Xiao J, Zhou X, Zhang QM, Dowben PA. J. Appl. Phys. 2009;106:044105.
  33. Choi J, Dowben PA, Pebley S. Bune AV, Ducharme S. Phys. Rev. Lett. 1998;80(6):1328-1331. doi: 10.1103/PhysRevLett.80.1328
  34. Elashmawi IS, Hakeem NA. Polymer Engineering and Science. 2008;48(5):895-901. doi: 10.1002/pen.21032
  35. Elashmawi IS, Abdelrazek EM, Ragab HM, Hakeem NA. Physica B. 2010;405:94-98. doi: 10.1016/j.physb.2009.08.037
  36. Mandal D, Henkel K, Muller K, Schmeiber D. Bull. Mater. Sci. 2010;33(4):457-461.
  37. Ortiz E, Cuan A, Badillo C, Cortes-Romero CM, Wang Q, Norena L. Int. J Quantum Chem. 2010;110:2411-2417.
  38. Arbuzov VI. Fundamentals of radiation optic materials. St-Peterburg, 2008. 284 p.(in Russ.).
  39. Hypercube 2002 HyperChem. Tools for Molecular Modeling. Available at: http://www.hyper.com/?tabid=360 (accessed 17 July 2011).
  40. Hamprecht FA, Cohen AJ, Tozer DJ, Handy NC. J. Chem. Phys. 1998;109:6264-6271.
  41. Becke AD. Phys Rev A. 1988;38:3098-3100. doi: 10.1103/PhysRevA.38.3098
  42. Johnson BG, Gill PM, Pople JA. J. Chem. Phys. 1993;98:5612-5626.
  43. Perdew JP, Chevary JA, Volsko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C. Phys. Rev. B. 1992;46:6671-6687.
  44. Zhao Y, Truhlar DG. Accounts of Chemical Research. 2007;41(2):157-167. doi: 10.1021/ar700111a
  45. Stewart JJP. J. Mol. Model. 2008;14:499-535.
  46. Su H, Strachan A, Goddard WAIII. Phys. Rev. B. 2004;70:064101.
  47. Guo SS, Sun XH, Wang SX, Xu S, Zhao X-Z, Chan HLW. Thermal and structural properties of high-energy electron irradiated Poly(Vinylidene Fluoride-Trifluoroethylene) copolymer blends. Mater. Chem. and Phys. 2005;91:348-354.
  48. Guo SS, Sun CL, Wu TS, Zhao XZ, Chan HLW. Thermal study on structural changes and phase transition in high-energy electron-irradiated blends of P(VDF-TrFE) copolymers. J. Mater. Sci. 2007;42:1184-1189.
  49. Li W, Meng Q, Zheng Y, Zhang Z, Xia W, Xu Z. Appl. Phys. Lett. 2010;96:192905.
  50. Gregorio RJr, Botta MM. J Polymer Sci: Part B: Polymer Physics. 1998;36:403-414.
  51. Duan C-G, Mei WN, Harfy JR, Ducharme S, Choi J, Dowben PA. Europhys. Lett. 2003;61(1):81-87.
  52. Dowben PA, Xiao J, Xu B, Sokolov A, Doudin B. Applied Surface Sciences. 2008;254(14):4238-4244. doi: 10.1016/j.apsusc.2008.01.062
  53. Fridkin VM. Photoferroelectrics. Springer-Verlag: NY- Berlin, 1979. doi: 10.1007/978-3-642-81351-1
  54. Kliem H. Advances in Solid State Physics. 2003;43:861-874. doi: 10.1007/978-3-540-44838-9_61
Содержание Оригинальная статья
Мат. биол. и биоинф.
2011;6(2):273-297
doi: 10.17537/2011.6.273
опубликована на рус. яз.

Аннотация (рус.)
Аннотация (англ.)
Полный текст (рус., pdf)
Список литературы Перевод на англ. яз.
Мат. биол. и биоинф.
2011;6(2):t14-t35
doi: 10.17537/2011.6.t14

Полный текст (англ., pdf)

 

  Copyright ИМПБ РАН © 2005-2024