Russian version English version
Volume 7   Issue 1   Year 2012
Tsukerman V.D., Eremenko Z.S., Karimova O.V., Sazykin A.A., Kulakov S.V.

Mathematical Model of Spatial Encoding in Hippocampal Formation. I. Grid Cells Neurodynamics

Mathematical Biology & Bioinformatics. 2012;7(1):206-243.

doi: 10.17537/2012.7.206.

References

  1. Tsukerman VD, Cheshkov GN. Neirokomp'iutery: razrabotka,  primenenie (Neurocomputers: Development and Application).  2002;7-8:65-72 (in Russ.).
  2. Tsukerman VD, Kulakov SV.  Neirokomp'iutery: razrabotka,  primenenie (Neurocomputers: Development and Application). 2004;11:15-25 (in Russ.).
  3. Tsukerman VD. Nelineinaia dinamika sensornogo vospriiatiia, ili Chto i kak kodiruet mozg (Nonlinear Dynamics of Sensory Perception, or: What and How Does Brain Code?). Rostov n/D; 2005. 195 p. (in Russ.).
  4. Tsukerman VD. Mathematical Model of Phase Coding of Events in the Brain. Mathematical Biology and Bioinformatics. 2006;1(1):97-107) (in Russ.). doi: 10.17537/2006.1.97
  5. Tsukerman VD, Kulakov SV, Karimova OV. Rippling Codes of Event Sequences. Mathematical Biology and Bioinformatics. 2006;1(1):108-122 (in Russ.). doi: 10.17537/2006.1.108
  6. Tsukerman VD, Karimova OV, Kulakov SV, Sazykin AA. Neirokomp'iutery: razrabotka,  primenenie (Neurocomputers: Development and Application). 2010;2:17-27 (in Russ.).
  7. Tsukerman VD. In: Nelineinye volny-2010 (Nonlinear Waves-2010). Gaponova-Grekhova AV, Nekorkina VI editors. Nizhny Novgorod; 2011. P. 396-411 (in Russ.).
  8. Lengyel M, Kwag J, Paulsen O, Dayan P. Matching storage and recall: hippocampal spike timing dependent plasticity and phase response curves. Nat. Neuroscience. 2005;8:1677-1683.
  9. Lisman J. The theta/gamma discrete phase code occuring during the hippocampal phase precession may be a more general brain coding scheme. Hippocampus. 2005;15:913-922. doi: 10.1002/hipo.20121
  10. Jacobs J, Kahana MJ, Ekstrom AD, Fried I. Brain oscillations control timing of single-neuron activity in humans. J. Neuroscience. 2007;27:3839-3844. doi: 10.1523/JNEUROSCI.4636-06.2007
  11. Lisman J, Buzsáki G. A neural coding scheme formed by the combined function of gamma and theta oscillations. Schizophr Bull. 2008;34:974-980. doi: 10.1093/schbul/sbn060
  12. Panzeri S, Brunel N, Logothetis NK, Kayser C. Sensory neural codes using multiplexed temporal scales. Trends Neurosci. 2010;33:111-120. doi: 10.1016/j.tins.2009.12.001
  13. Wulff P, Ponomarenko AA, Bartosa M, Korotkova TM, Fuchs EC, Bahner F, Both M, Tort ABL, Kopell NJ, Wisden W, Monyer H. Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons. PNAS USA. 2009;106:3561-3566. doi: 10.1073/pnas.0813176106
  14. McLelland D, Paulsen O. Neuronal oscillations and the rate-to-phase transform: mechanism, model and mutual information. J. Physiol. 2009;587(4):769-785. doi: 10.1113/jphysiol.2008.164111
  15. Harvey CD, Collman F, Dombeck DA, Tank DW. Intracellular dynamics of hippocampal place cells during virtual navigation. Nature. 2009;461:941-946. doi: 10.1038/nature08499
  16. Nadasdy Z. Binding by asynchrony: the neuronal phase code. Frontiers in Neuroscience. 2010;4:1-11. doi: 10.3389/fnins.2010.00051
  17. Schyns PG, Thut G, Gross J. Cracking the code of oscillatory activity. PLoS Biology. 2011;9:1-8. doi: 10.1371/journal.pbio.1001064
  18. Vinogradova OS. Gippokamp i pamiat' (Hippocampus and Memory). Moscow; 1975. 239 p. (in Russ.).
  19. O'Keefe J, Burgess N. Geometric determinants of the place fields of hippocampal neurons. Nature. 1996;381:425-428. doi: 10.1038/381425a0
  20. O’Keefe J, Burgess N. Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells. Hippocampus. 2005;15:853-866. doi: 10.1002/hipo.20115
  21. Taube JS, Muller RU, Ranck JBJr. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci. 1990;10:420-435.
  22. Taube JS, Muller RU, Ranck JrJB. Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J. Neurosci. 1990;10:436-447.
  23. Knierim JJ, Kudrimoti HS, McNaughton BL. Interactions between idiothetic cues and external landmarks in the control of place cells and head direction cells. J. Neurophysiol. 1998;80:425-446.
  24. Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, Moser MB, Moser EI. Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science. 2006;312:758-762. doi: 10.1126/science.1125572
  25. Wiener SI, Berthoz A, Zugaro MB. Multisensory processing in the elaboration of place and head direction responses by limbic system neurons. Brain Res. Cogn. Brain Res. 2002;14:75-90.
  26. Zugaro MB, Arleo A, Berthoz A, Wiener SI. Rapid spatial reorientation and head direction cells. J. Neurosci. 2003;23:3478-3482.
  27. Cressant A, Muller RU, Poucet B. Failure of centrally placed objects to control the firing fields of hippocampal place cells. J. Neurosci. 1997;17:2531-2542.
  28. Zugaro MB, Berthoz A, Wiener SI. Background but not foreground, spatial cues are taken as references for head direction responses by rat anterodorsal thalamus neurons. J. Neurosci. 2001;21(14):RC154.
  29. Zugaro MB, Arleo A, Dejean C, Burguieve E, Khamassi M, Wiener SI. Rat anterodorsal thalamic head direction neurons depend upon dynamic visual signals to select anchoring landmark cues. Eur. J. Neurosci. 2004;20:530-536.
  30. Jeffery KJ. Learning of landmark stability and instability by hippocampal place cells. Neuropharmacol. 1998;37:677-687. doi: 10.1016/S0028-3908(98)00053-7
  31. Knierim JJ, Kudrimoti HS, McNaughton BL. Place cells, head direction cells, and the learning of landmark stability. J. Neurosci. 1995;15:1648-1659.
  32. Markus EJ, Barnes CA, McNaughton BL, Gladden VL, Skaggs WE. Spatial information content and reliability of hippocampal CA1 neurons: Effects of visual input. Hippocampus. 1994;4:410-421. doi: 10.1002/hipo.450040404
  33. Quirk GJ, Muller RU, Kubie JL. The firing of hippocampal place cells in the dark depends on the rat’s recent experience. J. Neurosci. 1990;10:2008-2017.
  34. Wiener SI, Arleo A. Persistent activity in limbic system neurons: Neurophysiological and modeling perspectives. J. Physiol. (Paris). 2003;97:547-555. doi: 10.1016/j.jphysparis.2004.01.012
  35. Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. Microstructure of a spatial map in the entorhinal cortex. Nature. 2005;436:801-806. doi: 10.1038/nature03721
  36. Barry C, Hayman R, Burgess N, Jeffery KJ. Experience-dependent rescaling of entorhinal grids. Nat. Neurosci. 2007;10:682-684.
  37. Taube JS. Head direction cells and the neurophysiological basis for a sence of direction. Progr. Neurobiol. 1998;55:225-256.
  38. Fuhs MC, Touretzky DS. A spin glass model of path integration in rat medial entorhinal cortex. J. Neurosci. 2006;26:4266-4276.
  39. McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser M-B. Path integration and the neural basis of the «cognitive map». Nat. Rev. Neurosci. 2006;7:663-678.
  40. Moser EI, Kropff E, Moser M-B. Place cells, grid cells, and the brain’s spatial representation system. Annu. Rev. Neurosci. 2008;31:69-89.
  41. Burak Y, Fiete IR. Accurate path integration in continuous attractor network models of grid cells. PLoS Comput Biol. 2009;5(2):e1000291. doi: 10.1371/journal.pcbi.1000291
  42. Rolls ET. Spatial view cells and the representation of place in the primate hippocampus. Hippocampus. 1999;9:467-480. doi: 10.1002/(SICI)1098-1063(1999)9:4<467::AID-HIPO13>3.0.CO;2-F
  43. Victor JD, Mechler F, Ohiorhenuan I, Schmid AM, Purpura KP. Laminar and orientation-dependent characteristics of spatial nonlinearities: implications for the computational architecture of visual cortex. J. Neurophysiol. 2009;102:3414-3432. doi: 10.1152/jn.00086.2009
  44. Rolls ET, Stringer SM. Spatial view cells in the hippocampus, and their idiothetic update based on place and head direction. Neural Networks. 2005;8:1229-1241.
  45. Rolls ET, Xiang J-Z. Reward-spatial view representations and learning in the hippocampus. J. Neurosci. 2005;25:6167-6174. doi: 10.1523/JNEUROSCI.1481-05.2005
  46. Rolls ET, Xiang J-Z. Spatial view cells in the primate hippocampus, and memory recall. Rev. Neurosci. 2006;17:175-200.
  47. Kubie JL, Muller RU. Multiple representations in the hippocampus. Hippocampus. 1991;1(3):240-242. doi: 10.1002/hipo.450010305
  48. Wilson MA, McNaughton BL. Dynamics of the hippocampal ensemble code for space. Science. 1993;261:1055-1058. doi: 10.1126/science.8351520
  49. de Araujo IET, Rolls ET, Stringer SM. A view model which accounts for the spatial fields of hippocampal primate spatial view cells and rat place cells. Hippocampus. 2001;11:699-706. doi: 10.1002/hipo.1085
  50. Rolls ET, Xiang J, Franco L. Object, space, and object-space representations in the primate hippocampus. J. Neurophysiol. 2005;94:833-844. doi: 10.1152/jn.01063.2004
  51. Zhang K. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J. Neurosci. 1996;16:2112-2126.
  52. Samsonovich A, McNaughton BL. Path integration and cognitive mapping in a continuous attractor neural network model. J. Neurosci. 1997;17:5900-5920.
  53. Battaglia FP, Treves A. Attractor neural networks storing multiple space representations: a model for hippocampal place fields. Physical Review E. 1998;58:7738-7753. doi: 10.1103/PhysRevE.58.7738
  54. Stringer SM, Trappenberg TP, Rolls ET, Araujo IET. Self-organizing continuous attractor networks and path integration: one-dimensional models of head direction cells. Network: Comp. Neur. Syst. 2002;13:217-242.
  55. Rolls ET, Stringer SM, Trappenberg TP. A unified model of spatial and episodic memory. Proceed. Royal Soc. London B. 2002;269:1087-1093.
  56. Rolls ET. A computational theory of episodic memory formation in the hippocampus. Behav. Brain Res. 2010;215:80-196. doi: 10.1016/j.bbr.2010.03.027
  57. Arleo A, Rondi-Reig L. Multimodal sensory integration and concurrent navigation strategies for spatial cognition in real and artificial organisms. J. Integrat. Neurosci. 2007;6:327-366.
  58. Cobb SR, Buhl EH, Halasy K, Paulsen O, Somogyi P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature. 1995;378:75-78. doi: 10.1038/378075a0
  59. Pouille F, Scanziani M. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science. 2001;293:1159-1163. doi: 10.1126/science.1060342
  60. Farrant M, Nusser Z. Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nature Rev. Neurosci. 2005;6(3):215-229.
  61. McMahon LL, Kauer JA. Hippocampal Interneurons express a novel form of synaptic plasticity. Neuron. 1997;18:295-305. doi: 10.1016/S0896-6273(00)80269-X
  62. Miles R, Toth K, Gulyas AI, Hajos N, Freund TF. Differences between somatic and dendritic inhibition in the hippocampus. Neuron. 1996;16:815-823. doi: 10.1016/S0896-6273(00)80101-4
  63. Wang X-J, Buzsaki G. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J. Neurosci. 1996;16:6402-6413.
  64. Bartos M, Vida I, Frotscher M, Meyer A, Monyer H, Geiger JRP, Jonas P. Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. PNAS USA. 2002;99:13222-13227. doi: 10.1073/pnas.192233099
  65. Klausberger T, Magill PJ, Marton LF, Roberts JDB, Cobden PM, Buzsaki G, Somogyi P. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature. 2003;421:844-848. doi: 10.1038/nature01374
  66. Whittington MA, Traub RD. Interneuron diversity series: Inhibitory interneurons and network oscillations in vitro. Trends Neurosci. 2003;26:676-682. doi: 10.1016/j.tins.2003.09.016
  67. Csicsvari J, Hirase H, Czurko A, Buzsaki G. Reliability and state dependence of pyramidal cell-interneuron synapses in the hippocampus: an ensemble approach in the behaving rat. Neuron. 1998;21:179-189. doi: 10.1016/S0896-6273(00)80525-5
  68. Somogyi P, Tamas G, Lujan R, Buhl EH. Salient features of synaptic organisation in the cerebral cortex. Brain Research Reviews. 1998;26:113-135. doi: 10.1016/S0165-0173(97)00061-1
  69. Tamas G, Somogyi P, Buhl EH. Differentially interconnected networks of GABAergic interneurons in the visual cortex of the cat. J. Neurosci. 1998;18:4255-4270.
  70. Hestrin S, Galarreta M. Electrical synapses define networks of neocortical GABAergic neurons. Trends Neurosci. 2005;28:304-309. doi: 10.1016/j.tins.2005.04.001
  71. Lund JS, Griffiths S, Rumberger A, Levitt JB. Inhibitory synapse cover on the somata of excitatory neurons in macaque monkey visual cortex. Cer. Cortex. 2001;11:783-795. doi: 10.1093/cercor/11.9.783
  72. Maccaferri G, Lacaille J-C. Interneuron diversity series: hippocampal interneuron classifications – making things as simple as possible, not simpler. Trends Neurosci. 2003;26:564-571. doi: 10.1016/j.tins.2003.08.002
  73. Jonas P, Bischofberger J, Fricker D, Miles R. Interneuron diversity series: fast in, fast out – temporal and spatial signal processing in hippocampal interneurons. Trends Neurosci. 2004;27:30-40. doi: 10.1016/j.tins.2003.10.010
  74. Bragin A, Jando G, Nadasdy Z, Hetke J, Wise K, Buzsirki G. Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci. 1995;15:47-60.
  75. Senior TJ, Huxter JR, Allen K, O’Neill J, Csicsvari J. Gamma oscillatory firing reveals distinct populations of pyramidal cells in the CA1 region of the hippocampus. J. Neurosci. 2008;28:2274-2286.
  76. Egorov AV, Hamam BN, Fransen E, Hasselmo ME, Alonso AA. Graded persistent activity in entorhinal cortex neurons. Nature. 2002;420:173-178. doi: 10.1038/nature01171
  77. Fransen E, Tahvildari B, Egorov AV, Hasselmo ME, Alonso AA. Mechanism of graded persistent cellular activity of entorhinal cortex layer v neurons. Neuron. 2006;49:735-746. doi: 10.1016/j.neuron.2006.01.036
  78. Geisler C, Robbe D, Zugaro M, Sirota A, Buzsaki G. Hippocampal place cell assemblies are speed-controlled oscillators. PNAS USA. 2007;104:8149-8154. doi: 10.1073/pnas.0610121104
  79. Doeller C, Barry C, Burgess N. Evidence for grid cells in a human memory network. Nature. 2010;463:657-661. doi: 10.1038/nature08704
  80. Hasselmo ME, Brandon MP. Linking cellular mechanisms to behavior: entorhinal persistent spiking and membrane potential oscillations may underlie path integration, grid cell firing, and episodic memory. Hindawi Publishing Corporation, Neural Plasticity. 2008. Article ID 658323. doi: 10.1155/2008/658323
  81. Blair HT, Gupta K, Zhang K. Conversion of a phase- to a rate-coded position signal by a three-stage model of theta cells, grid cells, and place cells. Hippocampus. 2008;18:1239-1255. doi: 10.1002/hipo.20509
  82. Burgess N, Barry C, O'Keefe J. An oscillatory interference model of grid cell firing. Hippocampus. 2007;17:801-812. doi: 10.1002/hipo.20327
  83. Burgess N. Grid cells and theta as oscillatory interference: theory and predictions. Hippocampus. 2008;18:1157-1174. doi: 10.1002/hipo.20518
  84. Jeewajee A, Barry C, O’Keefe J, Burgess N. Grid cells and theta as oscillatory interference: electrophysiological data from freely moving rats. Hippocampus. 2008;18:1175-1185. doi: 10.1002/hipo.20510
  85. Giocomo LM, Moser M-B, Moser EI. Computational models of grid cells. Neuron. 2011;71:589-603. doi: 10.1016/j.neuron.2011.07.023
  86. Zilli EA, Hasselmo ME. Coupled noisy spiking neurons as velocity-controlled oscillators in a model of grid cell spatial firing. J. Neurosci. 2010;30:13850-13860. doi: 10.1523/JNEUROSCI.0547-10.2010
  87. Yoshida M, Giocomo LM, Boardman I, Hasselmo ME. Frequency of subthreshold oscillations at different membrane potential voltages in neurons at different anatomical positions on the dorso-ventral axis in the rat medial entorhinal cortex. J. Neurosci. 2011. In press. doi: 10.1523/JNEUROSCI.1654-11.2011
  88. Skaggs WE, McNaughton BL, Wilson MA, Barnes CA. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus. 1996;6:149-172. doi: 10.1002/(SICI)1098-1063(1996)6:2<149::AID-HIPO6>3.0.CO;2-K
  89. Hafting T, Fyhn M, Bonnevie T, Moser M-B, Moser E-I. Hippocampus-independent phase precession in entorhinal grid cells. Nature. 2008;453:1248-1252. doi: 10.1038/nature06957
  90. Jacobs J, Kahana MJ, Ekstrom AD, Mollison MV, Fried I. A sense of direction in human entorhinal cortex. PNAS USA. 2010;107:6487-6492. doi: 10.1073/pnas.0911213107
  91. Blair HT, Sharp PE. Anticipatory head direction signals in anterior thalamus: evidence for a thalamocortical circuit that integrates angular head motion to compute head direction. J. Neurosci. 1995;15:6260-6270.
  92. van Groen T, Wyss MJ. The postsubicular cortex in rat: characterization of the fourth region of the subicular cortex and its connections. Brain Res. 1990;529:165-177. doi: 10.1016/0006-8993(90)90824-U
  93. Jacobs LF. From movement to transitivity: The role of hippocampal parallel maps in configural learning. Reviews in Neurosci. 2006;17:99-109. doi: 10.1515/REVNEURO.2006.17.1-2.99
Table of Contents Original Article
Math. Biol. Bioinf.
2012;7(1):206-243
doi: 10.17537/2012.7.206
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024