Russian version English version
Volume 7   Issue 2   Year 2012
Anokhin K.V., Burtsev M.S., Ilyin V.A., Kiselev I.I., Kukin K.A., Lakhman K.V., Paraskevov A.V., Rybka R.B., Sboev A.G., Tverdokhlebov N.V.

A review of computational models of neuronal cultures in vitro

Mathematical Biology & Bioinformatics. 2012;7(2):372-397.

doi: 10.17537/2012.7.372.

References

  1. Churchland PS, Sejnowski TJ. Perspectives on Cognitive Neuroscience. Science. 1988;242(4879):741-745. doi: 10.1126/science.3055294
  2. Deisseroth K, Feng G, Majewska AK, Miesenböck G, Ting A, Schnitzer MJ. Next-Generation Optical Technologies for Illuminating Genetically Targeted Brain Circuits. J. Neurosci. 2006;26(41):10380-10386.
  3. Kravitz AV, Kreitzer AC. Optogenetic manipulation of neural circuitry in vivo. Current Opinion in Neurobiology. 2011;21(3):433-439. doi: 10.1016/j.conb.2011.02.010
  4. Soe AK, Nahavandi S, Khoshmanesh K. Neuroscience goes on a chip. Biosensors and Bioelectronics. 2012;35(1):1-13. doi: 10.1016/j.bios.2012.02.012
  5. Hierlemann A, Frey U, Hafizovic S, Heer F. Growing Cells Atop Microelectronic Chips: Interfacing Electrogenic Cells In Vitro With CMOS-Based Microelectrode Arrays. Proceedings of the IEEE. 2011;99(2):252-284. doi: 10.1109/JPROC.2010.2066532
  6. Cultured neuronal network [Online]. Wikipedia. URL: http://en.wikipedia.org/wiki/Cultured_neuronal_network (accessed 06 July 2012).
  7. Gross GW. Simultaneous Single Unit Recording in vitro with a Photoetched Laser Deinsulated Gold Multimicroelectrode Surface. IEEE Transactions on Biomedical Engineering. 1979;BME-26(5):273-279. doi: 10.1109/TBME.1979.326402
  8. Pine J. Recording action potentials from cultured neurons with extracellular microcircuit electrodes. Journal of Neuroscience Methods. 1980;2(1):19-31. doi: 10.1016/0165-0270(80)90042-4
  9. Segev R, Shapira Y, Benveniste M, Ben-Jacob E. Observations and modeling of synchronized bursting in two-dimensional neural networks. Physical Review E. 2001;64(1):011920. doi: 10.1103/PhysRevE.64.011920
  10. Segev R, Benveniste M, Shapira Y, Ben-Jacob E. Formation of electrically active clusterized neural networks. Physical review letters. 2003;90(16):168101-168101. doi: 10.1103/PhysRevLett.90.168101
  11. Persi E, Horn D, Volman V, Segev R, Ben-Jacob E. Modeling of Synchronized Bursting Events: The Importance of Inhomogeneity. Neural Computation. 2004;16(12):2577-2595. doi: 10.1162/0899766042321823
  12. Beggs JM, Plenz D. Neuronal avalanches in neocortical circuits. Journal of Neuroscience. 2003;23(35):11167.
  13. Pasquale V, Massobrio P, Bologna LL, Chiappalone M, Martinoia S. Self-organization and neuronal avalanches in networks of dissociated cortical neurons. Neuroscience. 2008;153(4):1354-1369. doi: 10.1016/j.neuroscience.2008.03.050
  14. Bakkum DJ, Chao ZC, Potter S.. Spatio-temporal electrical stimuli shape behavior of an embodied cortical network in a goal-directed learning task. Journal of Neural Engineering. 2008;5:310-323. doi: 10.1088/1741-2560/5/3/004
  15. Chao ZC, Bakkum DJ, Potter SM. Shaping Embodied Neural Networks for Adaptive Goal-directed Behavior. PLoS Comput Biol. 2008;4(3):e1000042. doi: 10.1371/journal.pcbi.1000042
  16. Simonov AYu, Kazantsev VB. Model of the appearance of avalanche bioelectric discharges in neural networks of the brain. Pis'ma v Zh. Èksper. Teoret. Fiz. 2011;93(8):516-521 (in Russ.).
  17. Segev R, Baruchi I, Hulata E, Ben-Jacob E. Hidden neuronal correlations in cultured networks. Physical Review-Series A. 2004;92(11):118102-118300.
  18. Tsodyks M, Uziel A, Markram H. Synchrony generation in recurrent networks with frequency-dependent synapses. J Neurosci. 2000;20(1):825-835.
  19. Wagenaar DA, Pine J, Potter SM. An extremely rich repertoire of bursting patterns during the development of cortical cultures. BMC neuroscience. 2006;7(1):11. doi: 10.1186/1471-2202-7-11
  20. Robinson HP, Kawahara M, Jimbo Y, Torimitsu K, Kuroda Y, Kawana A. Periodic Synchronized Bursting and Intracellular Calcium Transients Elicited by Low Magnesium in Cultured Cortical Neurons. J Neurophysiol. 1993;70(4):1606-1616.
  21. Meister M, Wong RO, Baylor DA, Shatz CJ. Synchronous Bursts of Action Potentials in Ganglion Cells of the Developing Mammalian Retina. Science. 1991;252(5008):939-943. doi: 10.1126/science.2035024
  22. Engel AK, König P, Kreiter AK, Schillen TB, Singer W. Temporal coding in the visual cortex: new vistas on integration in the nervous system. Trends in Neurosciences. 1992;15(6):218-226. doi: 10.1016/0166-2236(92)90039-B
  23. Shahaf G, Marom S. Learning in Networks of Cortical Neurons. J. Neurosci. 2001;21(22):8782-8788.
  24. Marom S, Eytan D. Learning in ex-vivo developing networks of cortical neurons. Development, Dynamics and Pathiology of Neuronal Networks: from Molecules to Functional Circuits. Elsevier; 2005. V. 147. P. 189-199.
  25. DeMarse TB, Wagenaar DA, Blau AW, Potter SM. The Neurally Controlled Animat: Biological Brains Acting with Simulated Bodies. Auton Robots. 2001;11(3):305-310. doi: 10.1023/A:1012407611130
  26. DeMarse TB, Dockendorf KP. Adaptive flight control with living neuronal networks on microelectrode arrays. In: Proc. of 2005 IEEE International Joint Conference on Neural Networks (IJCNN2005) (Montreal, Canada). 2005;3:1548-1551.
  27. Novellino A, D'Angelo P, Cozzi L, Chiappalone M, Sanguineti V, Martinoia S. Connecting Neurons to a Mobile Robot: An In Vitro Bidirectional Neural Interface. Computational Intelligence and Neuroscience. 2007;2007:1-13. doi: 10.1155/2007/12725
  28. le Feber J, Stegenga J, Rutten WLC. The Effect of Slow Electrical Stimuli to Achieve Learning in Cultured Networks of Rat Cortical Neurons. PLoS ONE. 2010;5(1):e8871. doi: 10.1371/journal.pone.0008871
  29. Warwick K, Xydas D, Nasuto SJ, Becerra VM, Hammond MW, Downes JH, Marshall S, Whalley BJ. Controlling a mobile robot with a biological brain. Defence Science Journal. 2010;60(1):5-14. doi: 10.14429/dsj.60.11
  30. Mulas M, Massobrio P, Martinoia S, Chiappalone M. A simulated neuro-robotic environment for bi-directional closed-loop experiments. Paladyn. Journal of behavioral robotics. 2011;1:179-186.
  31. Izhikevich EM. Which model to use for cortical spiking neurons? Neural Networks, IEEE Transactions on. 2004;15(5):1063-1070. doi: 10.1109/TNN.2004.832719
  32. Tsodyks M, Uziel A, Markram H. T Synchrony Generation in Recurrent Networks with Frequency-Dependent Synapses. J. Neurosci. 2000;20(RC50):1-5.
  33. Koch C. Biophysics of computation: information processing in single neurons. Oxford University Press, USA; 2005.
  34. Gerstner W, Kistler WM. Spiking neuron models: Single neurons, populations, plasticity. Cambridge Univ Pr; 2002. doi: 10.1017/CBO9780511815706
  35. Burkitt AN. A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biological cybernetics. 2006;95(1):1-19.
  36. Burkitt AN. A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties. Biological cybernetics. 2006;95(2):97-112. doi: 10.1007/s00422-006-0082-8
  37. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology. 1952;117(4):500-544. doi: 10.1113/jphysiol.1952.sp004764
  38. Hodgkin AL, Huxley AF, Katz B. Measurement of current-voltage relations in the membrane of the giant axon of Loligo. The Journal of physiology. 1952;116(4):424-448. doi: 10.1113/jphysiol.1952.sp004716
  39. Izhikevich EM. Simple model of spiking neurons. Neural Networks, IEEE Transactions on. 2003;14(6):1569-1572. doi: 10.1109/TNN.2003.820440
  40. Fitzhugh R. Impulses and physiological states in theoretical models of nerve membrane. Biophysical journal. 1961;1(6):445-466. doi: 10.1016/S0006-3495(61)86902-6
  41. Nagumo J, Arimoto S, Yoshizawa S. An active pulse transmission line simulating nerve axon. In: Proceedings of the IRE. 1962;50(10):2061-2070.
  42. Izhikevich EM, Edelman GM. Large-scale model of mammalian thalamocortical systems. In: Proceedings of the national academy of sciences. 2008;105(9):3593.
  43. Dayan P, Abbott LF, Abbott L. Theoretical neuroscience: Computational and mathematical modeling of neural systems. 2001.
  44. Tsodyks MV, Markram H. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. In: Proceedings of the National Academy of Sciences. 1997;94(2):719.
  45. Bi G, Poo M. Synaptic modification by correlated activity: Hebb’s postulate revisited. Annual review of neuroscience. 2001;24(1):139-166. doi: 10.1146/annurev.neuro.24.1.139
  46. Sjöström PJ, Rancz EA, Roth A, Häusser M. Dendritic excitability and synaptic plasticity. Physiological reviews. 2008;88(2):769-840. doi: 10.1152/physrev.00016.2007
  47. Song S, Miller KD, Abbott LF. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature neuroscience. 2000;3:919-926. doi: 10.1038/78829
  48. Gritsun TA, Le Feber J, Stegenga J, Rutten WL. Network bursts in cortical cultures are best simulated using pacemaker neurons and adaptive synapses. Biological cybernetics. 2010;102(4):293-310. doi: 10.1007/s00422-010-0366-x
  49. Massobrio P, Martinoia S. Modelling small-patterned neuronal networks coupled to microelectrode arrays. Journal of Neural Engineering. 2008;5:350. doi: 10.1088/1741-2560/5/3/008
  50. Richards CD, Shiroyama T, Kitai ST. Electrophysiological and immunocytochemical characterization of GABA and dopamine neurons in the substantia nigra of the rat. Neuroscience. 1997;80(2):545-557. doi: 10.1016/S0306-4522(97)00093-6
  51. Latham PE, Richmond BJ, Nelson PG, Nirenberg S. Intrinsic dynamics in neuronal networks. I. Theory. Journal of Neurophysiology. 2000;83(2):808-827.
  52. Latham PE, Richmond BJ, Nirenberg S, Nelson PG. Intrinsic dynamics in neuronal networks. II. Experiment. Journal of neurophysiology. 2000;83(2):828-835.
  53. Carnevale NT, Hines ML. The NEURON book. Cambridge Univ Pr; 2006. doi: 10.1017/CBO9780511541612
  54. Modeling in the Neurosciences: From Biological Systems to Neuromimetic Robotics. 2nd ed. Eds. Reeke G.N. et al. CRC Press; 2005. 736 p.
  55. Chao ZC, Bakkum DJ, Wagenaar DA, Potter SM. Effects of random external background stimulation on network synaptic stability after tetanization. Neuroinformatics. 2005;3(3):263-280. doi: 10.1385/NI:3:3:263
Table of Contents Original Article
Math. Biol. Bioinf.
2012;7(2):372-397
doi: 10.17537/2012.7.372
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024