Russian version English version
Volume 7   Issue 2   Year 2012
Redko V.G.

The Model of Interaction Between Learning and Evolutionary Optimization

Mathematical Biology & Bioinformatics. 2012;7(2):676-691.

doi: 10.17537/2012.7.676.


  1. Baldwin JM. A new factor in evolution. American Naturalist. 1896;30:441-451. doi: 10.1086/276408
  2. Morgan CL. On modification and variation. Science. 1896;4:733-740. doi: 10.1126/science.4.99.733
  3. Osborn HF. Ontogenetic and phylogenetic variation. Science. 1896;4:786-789. doi: 10.1126/science.4.100.786
  4. Waddington CH. Canalization of development and inheritance of acquired characters. Nature. 1942;150:563-565. doi: 10.1038/150563a0
  5. Adaptive Individuals in Evolving Populations: Models and Algorithms. Eds. Belew RK and Mitchell M. Massachusetts: Addison-Wesley; 1996.
  6. Evolution, Learning, and Instinct: 100 Years of the Baldwin Effect: Special Issue of Evolutionary Computation on the Baldwin Effect. Eds. Turney P, Whitley D, Anderson R. 1996;4(3).
  7. Hinton GE, Nowlan SJ. How learning can guide evolution. Complex Systems. 1987;1:495-502.
  8. Mayley G. Guiding or hiding: Explorations into the effects of learning on the rate of evolution. In: Proceedings of the Fourth European Conference on Artificial Life (ECAL 97). Eds. Husbands P and Harvey I. Cambridge, Massachusetts: MIT Press; 1997. P. 135-144.
  9. Ackley D, Littman M. Interactions between learning and evolution. In: Artificial Life II: Proceedings of the Second Artificial Life Workshop. Eds. Langton CG, Taylor C, Farmer JD, Rasmussen S. Redwood City CA: Addison-Wesley; 1992. P. 487-509.
  10. Red’ko VG, Mosalov OP, Prokhorov DV. A model of evolution and learning. Neural Networks. 2005;18(5-6):738-745. doi: 10.1016/j.neunet.2005.06.005
  11. Red'ko VG, Red'ko OV. In: Nauchnaia sessiia NIIaU MIFI - 2010. XII Vserossiiskaia nauchno-tekhnicheskaia konferentsiia «Neiroinformatika-2010»: sbornik nauchnykh trudov. (Scientific Session of the Moscow Engineering Physics institute (National Research Nuclear University) – 2010. The XIIth All-Russian Scientific and Technical Conference “Neuroinformatics – 2010”). Moscow; 2010. P. 191-198 (in Russ.).
  12. Eigen M. Molekulare Selbstorganisation und Evolution (Self-Organization of Matter and the Evolution of Biological Macromolecules). Naturwissenschaften Bd. 1971;58(10):465-523. doi: 10.1007/BF00623322
  13. Eigen M, Schuster P. The Hypercycle - A Principle of Natural Self-Organization. Springer-Verlag, Berlin; 1979.
  14. Red'ko VG. Evoliutsiia, neironnye seti, intellekt. Modeli i kontseptsii evoliutsionnoi kibernetiki (Evolution, Neural Networks, Intelligence. Models and Conceptions of Evolutionary Cybernetics). Moscow; 2005 (in Russ.).
  15. Red'ko VG, Tsoy YuR. Estimation of the efficiency of evolution algorithms. Doklady Mathematics. 2005;72(2):810-813.
  16. Kimura M. The Neutral Theory of Molecular Evolution. Cambridge, Cambridge University Press; 1983. doi: 10.1017/CBO9780511623486
  17. Red'ko VG, Tsoy YuR. In: Bionicheskie informatsionnye sistemy i ikh prakticheskie primeneniia (Bionic Information Systems and their Applications). Eds. Kureichik V, Red’ko V, Zinchenko L. Moscow; 2011. P.110-127 (in Russ.).
  18. Red'ko VG. Biofizika (Biofizika). 1990;35(5):831-834.
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2012.7.676
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References Translation into English
Math. Biol. Bioinf.
doi: 10.17537/2014.9.t1

Full text (eng., pdf)


  Copyright IMPB RAS © 2005-2024