Russian version English version
Volume 10   Issue 2   Year 2015
Anosov A.V., Kormilicyn O.P., Patrina T. A., Shemelinin D.A.

Research of Mechanical Characteristics of Bone Tissues By Means Of the Developed Automated System of Medical Appointment

Mathematical Biology & Bioinformatics. 2015;10(2):548-561.

doi: 10.17537/2015.10.548.

References

  1. Mimics: Medical Image Segmentation for Engineering on Anatomy. http://biomedical.materialise.com/mimics (accessed 15 September 2015).
  2. Catia V5-6R2014. http://www.3ds.com/ru/produkty-i-uslugi/catia/produkty/catia-v5/ (accessed 20 September 2015).
  3. Ansys. http://www.ansys.com (accessed 20 September 2015).
  4. Microsoft Access. https://products.office.com/en-US/access (accessed 25 September 2015).
  5. Bonfield W., Li C.H. Anisotropy of nonelastic flow in bone. J. Appl. Phys. 1967;38:2450-2455. doi: 10.1063/1.1709926
  6. Evans F.G. In: Mechanical Properties of Bone. Charles C. Thomas, Springfield, IL; 1973. P. 282-310.
  7. Mather B.S. The symmetry of the mechanical properties of the human femur. J. Surg. Res. 1967;5:222-229. doi: 10.1016/0022-4804(67)90055-8
  8. Sedlin E.D. A rheological model for cortical bone. Acta Orthop. Scand. 1965;83:77.
  9. Yamada H. Strength of biological materials. Baltimore: Williams & Wilkins; 1970. 283 p.
  10. Knets I.V., Pfafrod G.O., Saulgozis Iu.Zh. Deformirovanie i razrushenie tverdykh biologicheskikh tkanei (Deformation and fracture of solid biological tissues). Riga; 1980. 319 p. (in Russ.).
  11. Bruiaka V.A., Fokin V.G., Soldusova E.A., Glazunova N.A.,  Adeianov I.E. Inzhenernyi analiz v Ansys Workbench (Engineering analysis in Ansys Workbench): textbook. Part I. Samara; 2010. 271 p. (in Russ.).
  12. Hansen E. Modelling heat transfer in a bone-cement-prosthesis system. Journal of Biomechanics. 2003;36:787-795. doi: 10.1016/S0021-9290(03)00012-5
  13. Naseer J. In: The Morning Echo: An Observation of Nature and Science. Bloomington: iUniverse; 2012. P. 443-460.
  14. Bergmann G., Graichen F., Rohlmann A., Verdonschot N., Lenthe G. Frictional heating of total hip implants. Part 2: finite element study. Journal of Biomechanics. 2001;34(4):429-435. doi: 10.1016/S0021-9290(00)00234-7
  15. Biyikli M., Modest M., Tarr R. Measurements of thermal properties for human femora. Journal of Biomedical Materials Research. 1986;20(9):1335-1345. doi: 10.1002/jbm.820200908
  16. Clattenburg R., Cohen J., Conner S., Cook N. Thermal properties of cancellous bone. Journal of Biomedical Materials Research. 1975;9(2):169-182. doi: 10.1002/jbm.820090206
  17. Mazzullo S., Paolini M., Verdi C. Numerical simulation of thermal bone necrosis during cementation of femoral prostheses. Journal of Mathematical Biology. 1991;29(5):475-494. doi: 10.1007/BF00160473
  18. Huiskes R. Some fundamental aspects of human joint replacement, analyses of stresses and heat conduction in bone-prosthesis structures. Acta Orthop. Scand. 1980;185:1-208. doi: 10.3109/ort.1980.51.suppl-185.01
  19. Zelenov E.S. Experimental investigation of the thermophysical properties of compact bone. Mechanics of Composite Materials. 1985:759-762.
  20. Stanczyk M., Telega J. Modelling of heat transfer in biomechanics - a review Part II. Orthopaedics. Acta of Bioengineering and Biomechanics. 2002;4(2):3-31.
  21. Kaorapapong K., Amornsamankul S., Tang I. Wiwatanapataphee B. Heat Transfer in Cemented Hip Replacement Process. International Journal of Mechanics. 2011;5(3):202-208.
  22. Dobelis M.A., Melnis A.É. Evaluation of the mechanical behavior of compact deproteinized and demineralized bone tissue under tension. Mechanics of Composite Materials. 1983;18(6):719-725. doi: 10.1007/BF00604156
Table of Contents Original Article
Math. Biol. Bioinf.
2015;10(2):548-561
doi: 10.17537/2015.10.548
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024