Russian version English version
Volume 12   Issue 2   Year 2017
Vitaliy A. Likhoshvai, Vladislav V. Kogai, Stanislav I. Fadeev, Tamara M. Khlebodarova

On The Correlation between Properties of One-Dimensional Mappings of Control Functions and Chaos in a Special Type Delay Differential Equation

Mathematical Biology & Bioinformatics. 2017;12(2):385-397.

doi: 10.17537/2017.12.385.

References

 

  1. Likhoshvai V.A., Kogai V.V., Fadeev S.I., Khlebodarova T.M. Alternative splicing can lead to chaos. J. Bioinform. Comput. Biol. 2015;13. Article No. 1540003. doi: 10.1142/S021972001540003X
  2. Khlebodarova T.M., Kogai V.V., Fadeev S.I., Likhoshvai V.A. Chaos and hyperchaos in simple gene network with negative feedback and time delays. J. Bioinform. Comput. Biol. 2017;15(2). Article No. 1650042. doi: 10.1142/S0219720016500426
  3. Likhoshvai V.A., Kogai V.V., Fadeev S.I., Khlebodarova T.M. Chaos and hyperchaos in a model of ribosome autocatalytic synthesis. Sci. Rep. 2016;6. Article No. 38870. doi: 10.1038/srep38870
  4. Kogai V.V., Khlebodarova T.M., Fadeev S.I., Likhoshvai V.A. Complex dynamics in alternative mRNA splicing: mathematical model. Computational Technologies. 2015;20(1):38–52 (in Russ.).
  5. Suzuki Y., Lu M., Ben-Jacob E., Onuchic J.N. Periodic, Quasi-periodic and chaotic dynamics in simple gene elements with time delays. Sci. Rep. 2016;6. Article No. 21037. doi: 10.1038/srep21037
  6. Mackey M.C., Glass L. Oscillation and chaos in physiological control systems. Science. 1977;197:287–289. doi: 10.1126/science.267326
  7. Perez F.J., Malta C.P., Coutinho F.A. Qualitative analysis of oscillations in isolated populations of flies. J. Theor. Biol. 1978;71(4):505–514. doi: 10.1016/0022-5193(78)90321-1
  8. Ikeda K., Matsumoto K. High-dimensional chaotic behavior in systems with time-delayed feedback. Physica D. 1987;29:223–235. doi: 10.1016/0167-2789(87)90058-3
  9. Bastos de Figueiredo J.C., Diambra L., Glass L., Malta C.P. Chaos in two-looped negative feedback systems. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 2002;65. Article No. 051905. doi: 10.1103/PhysRevE.65.051905
  10. Kogai V.V., Likhoshvai V.A., Fadeev S.I., Khlebodarova T.M. Multiple scenarios of transition to chaos in the alternative splicing model. Int. J. Bifurcat. Chaos. 2017;27. Article No. 1730006. doi: 10.1142/S0218127417300063
  11. Likhoshvai V.A., Fadeev S.I., Kogai V.V., Khlebodarova T.M. On the chaos in gene networks. J. Bioinform. Comput. Biol. 2013;11(1). Article No. 1340009. doi: 10.1142/S021972001340009X
  12. Benincà E., Ballantine B., Ellner S.P., Huisman J. Species fluctuations sustained by a cyclic succession at the edge of chaos. Proc. Natl. Acad. Sci. USA. 2015;112(20):6389–6394. doi: 10.1073/pnas.1421968112
  13. Varona P., Rabinovich M.I., Selverston A.I., Arshavsky Y.I., Winnerless competition between sensory neurons generates chaos: A possible mechanism for molluscan hunting behavior. Chaos. 2002;12(3):672–677. doi: 10.1063/1.1498155
  14. Ermentrout B., Campbell J., Oster G. A model for shell patterns based on neural activity. Veliger. 1986;28:369–388.
  15. Meinhardt H. The Algorithmic Beauty of Sea Shells. Third Edition. Heidelberg: Springer; 2003. doi: 10.1007/978-3-662-05291-4
  16. Meinhardt H., Klingler M. A model for pattern-formation on the shells of molluscs. J. Theor. Biol. 1987;126:63–89. doi: 10.1016/S0022-5193(87)80101-7
  17. Philippe P. Chaos, population biology, and epidemiology: some research implications. Hum. Biol. 1993;65(4):525–546.
  18. Constantino R.F., Desharnais R.A., Cushing J.M., Dennis B. Chaotic dynamics in an insect population. Science. 1997;275:389–391. doi: 10.1126/science.275.5298.389
  19. Dennis B., Desharnais R.A., Cushing J.M., Henson S. M., Costantino R.F. Estimating chaos and complex dynamics in an insect population. Ecological Monographs. 2001;71(2):277–303. doi: 10.1890/0012-9615(2001)071[0277:ECACDI]2.0.CO;2
  20. Dennis B., Desharnais R.A., Cushing J.M., Costantino R.F. Transitions in population dynamics: equilibra to periodic cycles to aperiodic cycles. J. Anim. Ecol. 1997;66:704–729. doi: 10.2307/5923
  21. Maquet J., Letellier C., Aguirre L.A. Global models from the Canadian lynx cycles as a direct evidence for chaos in real ecosystems. J. Math. Biol. 2007;55(1):21–39. doi: 10.1007/s00285-007-0075-9
  22. Garfinkel A., Chen P.S., Walter D.O., Karagueuzian H.S., Kogan B., Evans S.J., Karpoukhin M., Hwang C., Uchida T., Gotoh M., Nwasokwa O., Sager P., Weiss J.N. Quasiperiodicity and chaos in cardiac fibrillation. J. Clin. Invest. 1997;99(2):305–314. doi: 10.1172/JCI119159
  23. Qu Z. Chaos in the genesis and maintenance of cardiac arrhythmias. Prog. Biophys. Mol. Biol. 2011;105(3):247–257. doi: 10.1016/j.pbiomolbio.2010.11.001
  24. Holstein-Rathlou N.H. Oscillations and chaos in renal blood flow control. J. Am. Soc. Nephrol. 1993;4(6):1275–1287.
  25. Korn H., Faure P. Is there chaos in the brain? II. Experimental evidence and related models. C. R. Biol. 2003;326:787–840. doi: 10.1016/j.crvi.2003.09.011
  26. Gu H.G., Jia B., Chen G.R. Experimental evidence of a chaotic region in a neural pacemaker. Phys. Lett. A. 2013;377(9):718–720. doi: 10.1016/j.physleta.2013.01.015
  27. Gu H. Experimental observation of transition from chaotic bursting to chaotic spiking in a neural pacemaker. Chaos. 2013;23(2). Article No. 023126. doi: 10.1063/1.4810932
  28. Leloup J.C., Goldbeter A. Chaos and birhythmicity in a model for circadian oscillations of the PER and TIM proteins in Drosophila. J. Theor. Biol. 1999;198(3):445–459. doi: 10.1006/jtbi.1999.0924
  29. Leloup J.C., Gonze D., Goldbeter A. Limit cycle models for circadian rhythms based on transcriptional regulation in Drosophila and Neurospora. J. Biol. Rhythms. 1999;14(6):433–448. doi: 10.1177/074873099129000948
  30. Romond P.C., Rustici M., Gonze D., Goldbeter A. Alternating oscillations and chaos in a model of two coupled biochemical oscillators driving successive phases of the cell cycle. Ann. N.Y. Acad. Sci. 1999;879:180–193. doi: 10.1111/j.1749-6632.1999.tb10419.x
  31. Goldbeter A., Gonze D., Houart G., Leloup J.C., Halloy J., Dupont G. From simple to complex oscillatory behavior in metabolic and genetic control networks. Chaos. 2001;11:247–260. doi: 10.1063/1.1345727
  32. Ciliberto A., Novak B., Tyson J.J. Mathematical model of the morphogenesis checkpoint in budding yeast. J. Cell. Biol. 2003;163(6):1243–1254. doi: 10.1083/jcb.200306139
  33. Gérard C., Goldbeter A. From simple to complex patterns of oscillatory behavior in a model for the mammalian cell cycle containing multiple oscillatory circuits. Chaos. 2010;20(4). Article No. 045109. doi: 10.1063/1.3527998
  34. Zhang Z., Ye W., Qian Y., Zheng Z., Huang X., Hu G. Chaotic motifs in gene regulatory networks. PLoS One. 2012;7(7). Article No. e39355. doi: 10.1371/journal.pone.0039355
  35. El'sgol'ts L.E., Norkin S.B. Introduction to the theory of differential equations with deviating argument. Nauka: Moskow; 1971.
  36. Likhoshvai V., Ratushny A. Generalized hill function method for modeling molecular processes. J. Bioinform. Comput. Biol. 2007;5(2B):521–231. doi: 10.1142/S0219720007002837
  37. Feigenbaum M.J. Universal Behavior in Nonlinear Systems. Los Alamos Science. 1980;1(1):4–27.
  38. Feigenbaum M.J. The Universal Metric Properties of Nonlinear Transformations. J. Stat. Phys. 1979;21:669–706. doi: 10.1007/BF01107909
  39. Li T.Y., Yorke J.A. Period three implies chaos. Amer. Math. Monthly. 1975;82(10):985–992. doi: 10.2307/2318254
  40. Il'yashenko Yu.S. Finiteness theorems for limit cycles. Russian Mathematical Surveys. 1990;45(2):129. doi: 10.1070/RM1990v045n02ABEH002335
  41. Ilyashenko Yu.S. Finiteness theorems for limit cycles: a digest of the revised proof. Izvestiya: Mathematics. 2016;80(1):50. doi: 10.1070/IM8352
  42. Écalle J. Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac. Paris: Hermann; 1992. (Actualites mathématiques).
Table of Contents Original Article
Math. Biol. Bioinf.
2017;12(2):385-397
doi: 10.17537/2017.12.385
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024