Russian version English version
Volume 12   Issue 2   Year 2017
Belega E.D., Elyutin P.V., Trubnikov D.N.

Phases in water octamer: molecular point of view

Mathematical Biology & Bioinformatics. 2017;12(2):487-495.

doi: 10.17537/2017.12.487.

References

  1. Berry R.S., Smirnov B.M. Phase transitions in different types of clusters. Physics-Uspekhi. 2009;52(2):137-164. doi: 10.3367/UFNe.0179.200902b.0147
  2. Rodriguez J., Laria D., Marceca E.J., Estrin D.A. Isomerization, melting, and polarity of model water clusters: (H2O)6 and (H2O)8. J. Chem. Phys. 1999;110(18):9039-9047.
  3. Wales D.J., Ohmine I. Structure, dynamics, and thermodynamics of model (H2O)8 and (H2O)20 clusters. J. Chem. Phys. 1993;98:7245-7256.
  4. Tsai C.J., Jordan K.D. Monte Carlo simulation of (H2O)8: Evidence for a lowenergy S4 structure and characterization of the solid ↔ liquid transition. J. Chem. Phys. 1991;95:3850-3853.
  5. Tsai C.J., Jordan K.D. Theoretical study of small water clusters: low–energy fused cubic structures for (H2O)n, n = 8, 12, 16, and 20. J. Phys. Chem. 1993;97:5208-5210.
  6. Nigra P., Carignano M.A., Kais S. Study of phase changes of the water octamer using parallel tempering and multihistogram methods. J. Chem. Phys. 2001;115(6):2621-2628.
  7. Carignano M.A. Monte Carlo simulations of small water clusters: microcanonical vs canonical ensemble. Chem. Phys. Lett. 2002;361:291-297.
  8. Buck U., Ettischer I., Melzer M., Buch V., Sadlej J. Structure and Spectra of Three–Dimensional (H2O)n Clusters, n=5, 8, 9, 10. Phys. Rev. Lett. 1998;80(12):2578-2581. doi: 10.1103/PhysRevLett.80.2578
  9. Lee H.M., Suh SB., Lee J.Y., Tarakeshwar P., Kim K.S. Structures, energies, vibrational spectra, and electronic properties of water monomer to decamer. J. Chem. Phys. 2000;112(22):9759-9772.
  10. Wales D.J., Hodges M.P. Global minima of water clusters (H2O)n, n≤21, described by an empirical potential. Chem. Phys. Lett. 1998;286:65-72.
  11. James T., Wales D.J., Hernández–Rojas. Global minima for water clusters (H2O)n, n≤21 described by a five–site empirical potential. J. Chem. Phys. Lett. 2005;415:302-307.
  12. Laria D., Rodriguez J., Dellago C., Chandler D. Dynamical aspects of isomerization and melting transitions in [H2O]8. J. Phys. Chem. A. 2001;105:2646-2651.
  13. Knochenmuss R., Leutwyler S. Structures and vibrational spectra of water clusters in the self–consistent–field approximation. J. Chem. Phys. 1992;96:5233-5244.
  14. Belair S.D., Francisco J.S. Stability of the cubic water octamer. Phys. Rev. A. 2003;67:063206. doi: 10.1103/PhysRevA.67.063206
  15. Pedulla J.M., Jordan K.D. Melting behavior of the (H2O)6 and (H2O)8 clusters. Chem. Phys. 1998;239:593-601.
  16. Cole W.T.C., Farrell J.D., Wales D.J., Saykally R.J. Structure and torsional dynamics of the water octamer from THz laser spectroscopy near 215 mm. Science. 2016;352:1194-1197. doi: 10.1126/science.aad8625
  17. Lindemann F.A. The calculation of molecular vibration frequencies. Physik. Z. 1910;11:609-612.
  18. Gelman–Constantin J., Carignano M. A., Szleifer I., Marceca E.J., Corti H.R. Structural transitions and dipole moment of water clusters (H2O)n, n=4–100. J. Chem. Phys. 2010;133:024506. doi: 10.1063/1.3455716
  19. Schnabel S., Seaton D.T., Landau D.P., Bachman M. Microcanonical entropy inflection points: Key to systematic understanding of transitions in finite systems. Phys. Rev. E. 2011;84:011127. doi: 10.1103/PhysRevE.84.011127
  20. Junqi Yin and Landau D.P. Structural properties and thermodynamics of water clusters: A Wang–Landau study. J. Chem. Phys. 2011;134:074501. doi: 10.1063/1.3555761
  21. Schmidt M. and von Issendorff B. Gas-phase calorimetry of protonated water clusters. J. Chem. Phys. 2012;136:164307. doi: 10.1063/1.4705266
  22. Belega E.D., Tatarenko K.A., Trubnikov D.N., Cheremukhin E.A. The dynamics of water hexamer isomerization. Russian Journal of Physical Chemistry. B. 2009;3(3):404-409.
  23. Belega E.D., Cheremukhin E.A., Elyutin P.V., Trubnikov D.N. On the definition of the microcanonical temperature of small weakly bound molecular clusters. Chem. Phys. Lett. 2010;496:167-171.
  24. Belega E.D., Trubnikov D.N., Cheremukhin E.A. Melting of the water hexamer. J. Structural Chemistry. 2015;56:52-57. doi: 10.1134/S0022476615010084
  25. Swope W.C., Andersen H.C., Berens H., Wilson K.R. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. J. Chem. Phys. 1982;76(1):637-649.
  26. Tsai C.J., Jordan K.D. Use of the histogram and jumpwalking methods for overcoming slow barrier crossing behavior in Monte Carlo simulations: Applications to the phase transitions in the (Ar)13 and (H2O)8 clusters. J. Phys. Chem. 1993;99:6957-6970.
  27. Ore O. Theory of Graphs. American Mathematical Society, 1962. (Colloquium Publications; V. 38).
  28. Kalinichev A.G., Churakov S.V. Thermodynamics and structure of molecular clusters in supercritical water. Chem. Phys. Lett. 1999;302:411-417.
  29. Saykally R.J., Wales D.J. Pinning Down the Water Hexamer. Science. 2012;336:814-815. doi: 10.1126/science.1222007
Table of Contents Original Article
Math. Biol. Bioinf.
2017;12(2):487-495
doi: 10.17537/2017.12.487
published in English

Abstract (eng.)
Abstract (rus.)
Full text (eng., pdf)
References

 

  Copyright IMPB RAS © 2005-2024