Russian version English version
Volume 13   Issue 2   Year 2018
Sidorova A.E. , Levashova N.T. , Semina A.E. , Melnikovà À.À.

The Application of a Distributed Model of Active Media for the Analysis of Urban Ecosystems Development

Mathematical Biology & Bioinformatics. 2018;13(2):454-465.

doi: 10.17537/2018.13.454.

References

 

  1. Forrester J.W. Urban Dynamics. MIT Press, Cambridge, Massachusetts. 290 p.
  2. Makhov S.A. Mathematical modeling of world dynamics and sustainable development on the example of the Forrester’s model: KIAM Preprint ¹ 6. Moscow, 2005 (in Russ.).
  3. Jianguo Wu, John L. David. A spatially explicit hierarchical approach to modeling complex ecological systems: theory and applications. Ecological Modeling. 2002;153:7-26. doi: 10.1016/S0304-3800(01)00499-9
  4. Changlin Y., Dingquan Y., Honghui Z., Shengjing Y., Guanghui C. Simulation of urban growth using a cellular automata-based model in a developing nation’s region. International. Jornal jf Engeneering Sciens fnd Advancad Tecnology. 2012;2(3):453-460.
  5. Lizhong H., Lina T., Shenghui C., Kai Y. Simulating Urban Growth Using the SLEUTH Model in a Coastal Peri-Urban District in China. Sustainability. 2014;6:3899-3914. doi: 10.3390/su6063899
  6. Bihamta N., Soffianian A., Fakherran S., Gholamalifarm M. Using the SLEUTH Urban Growth Model to Simulate Future Urban Expansion of the Isfahan Metropolitan Area, Iran. Journal of the Indian Society of Remote Sensing. 2015;43:407-414. doi: 10.1007/s12524-014-0402-8
  7. Alkheder S., Shan J. Cellular Automata Urban Growth Simulation and Evaluation - A Case Study of Indianapolis. In: Proceedings of the 8th International Conference on GeoComputation (University of Michigan, United States of America, 31 July - 3 August 2005). http://www.geocomputation.org/2005/Alkheder (accessed 22.11.2018).
  8. Vaz E., Arsanjani J.J. Predicting Urban Growth of the Greater Toronto Area – Coupling a Markov Cellular Automata with Document Meta-Analysis. Journal of Environmental Informatics. 2015;25:71-80. doi: 10.3808/jei.201500299
  9. Yeh A.G.-O., Li X. Urban Simulation Using Neural Networks and Cellular Automata for Land Use Planning. In: ISPRS Commission IV, Symposium 2002 Geospatial Theory: Processing and Applications (July 9-12, 2002, Ottawa, Canada). Eds. Costas Armenakis, Y.C. Lee. 2002. Article No. 36. http://www.isprs.org/proceedings/XXXIV/part4/pdfpapers/036.pdf (accessed 22.11.2018).
  10. Kolmogorov A.N., Petrovsky I.G., Piskunov N.S. Investigation of the diffusion equation connected with the increase of matter and its application to a single biological problem. Bull. Moscow State University, Section A. 1937;1(6):1-26.
  11. Zeldovich Ya.B., Frank-Kamenetsky D.A. On the theory of uniform flame propagation. Jour. Phys. Chemistry. 1938;12(1):100-105.
  12. Yelkin Y.E. Autowave processes. Mathematical Biology and Bioinformatics. 2006;1(1):27-40 (in Russ.). doi: 10.17537/2006.1.27
  13. Hodgkin A., Huxley A. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952;117:500-544. doi: 10.1113/jphysiol.1952.sp004764
  14. Ataullakhanov F.I., Guria G.T. The spatial aspects of blood coagulation dynamics. Hypothesis. Biophysics. 1994;39(1):89-95 (in Russ.).
  15. Mann K.G. Is there value in kineticmodeling of thrombin generation? Yes. J. Thromb. Haemost. 2012;10(8):1463-1469. doi: 10.1111/j.1538-7836.2012.04799.x
  16. Hemker H.C., Kerdelo S., Kremers R.M.W. Is there value in kinetic modeling of thrombin generation? J. Thromb. Haemost. 2012;10(8):1470-1477. doi: 10.1111/j.1538-7836.2012.04802.x
  17. FitzHugh R. Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophysics. 1955;17:257-278. doi: 10.1007/BF02477753
  18. Nagumo J., Arimoto S., Yoshizawa S. An active pulse transmission line simulating nerve axon. Proc. IRE. 1962;50:2061-2070. doi: 10.1109/JRPROC.1962.288235
  19. FitzHugh R., Impulses and Physiological States in Theoretical Models of Nerve Membrane. Biophysical Journal. 1961;1:445-466. doi: 10.1016/S0006-3495(61)86902-6
  20. FitzHugh R. Mathematical models of excitation and propagation in nerve. In: Biological Engineering. Ed. Schwan H.P. N.-Y.: McGraw-Hill Book Co., 1969. P. 1-85.
  21. Vasiliev V.A., Romanovsky Yu.M., Yakhno V.G. Autowave processes. M.: Nauka, 1987. 240 p. (in Russ.).
  22. Sidorova A.E., Levashova N.T., Mel’nikova A.A., Yakovenko L.V. A model of a human dominated urban ecosystem as an active medium. Biophysics. 2015;60(3):466-473. doi: 10.1134/S0006350915030185
  23. Sidorova A.E., Mukhartova Yu.V., Yakovenko L.V. An Urban Ecosystem as a Superposition of Interrelated Active Media. Moscow University Physics Bulletin. 2014;69(5):392-400. doi: 10.3103/S0027134914050087
  24. Sidorova A.E., Levashova N.T., Mel’nikova A.A., Deryugina N.N., Semina A.E. Autowave Self-Organization in Heterogeneous Natural–Anthropogenic Ecosystems. Moscow University Physics Bulletin. 2016;71(6):562-568. doi: 10.3103/S0027134916050167
  25. Levashova N., Mel’nikova A., Semina A., Sidorova A. Autowave mechanisms of structure formation in urban ecosystems as the process of self-organization in active media. Communication on Applied Mathematics and Computation. 2017;31(1):32-42.
  26. Sidorova A.E., Levashova N.T., Mel’nikova A.A., Semina A.E. Model of the structure formation of urine ecosystems as a process of autowave self-organization in active media. Mathematical Biology and Bioinformatics. 2017;12(1):186-197 (in Russ.). doi: 10.17537/2017.12.186
  27. Levashova N.T., Mel’nikova A.A., Lukyanenko D.V., Sidorova A.E, Bytsyura S.V. Modeling of Urboecosystems as Self-Organization Processes. Math modeling. 2017;29(11):40-52 (in Russ.).
  28. Savenko V.S. Geochemical aspects of sustainable development. Moscow: GEOS, 2003. 180 p. (in Russ.).
  29. Levashova N.T., Mel’nikova A.A. Step-Like Contrast Structure in a Singularly Perturbed System of Parabolic Equations. Differential equations. 2015;51(3):342-361. doi: 10.1134/S0012266115030064
  30. Butuzov V.F., Levashova N.T., Mel'nikova A.A. A steplike contrast structure in a singularly perturbed system of elliptic equation. Computational mathematics and mathematical physics. 2013;53(9):1239-1259. doi: 10.1134/S0965542513090054
  31. Orlov A.O., Levashova N.T., Nefedov N.N. Solution of Contrast Structure Type for a Parabolic Reaction–Diffusion Problem in a Medium with Discontinuous Characteristics. Differential equations. 2018;54(5):669-686. doi: 10.1134/S0012266118050105
  32. Levashova N.T., Nefedov N.N., Orlov A.O. Stationary reaction-diffusion equation with a discontinuous term. Computational Mathematics and Mathematical Physics. 2017;57(5):854-866 (in Russ.). doi: 10.1134/S0965542517050062
  33. Moscow Investment Portal. https://investmoscow.ru/city-projects/aip/ (accessed 22.11.2018).
  34. Complex urban policy and the construction of the city of Moscow. https://stroi.mos.ru/infographics/novoi-moskvie-piat-liet-1/ (accessed 22.11.2018) (in Russ.).
  35. Moscow Map. https://yandex.ru/maps/213/moscow/ (accessed 22.11.2018) (in Russ.).
  36. Map of the cottage settlement Marseille. http://p-marsel.ru/map/ (accessed 22.11.2018) (in Russ.).
  37. General Plan of Moscow. Western Valley the Suburb. http://zapad.aprigorod.ru/genplan/ (accessed 22.11.2018) (in Russ.).
  38. Norms and rules for designing the planning and development of Moscow (MGSN 1.01-99). http://docs.cntd.ru/document/1200003977 (accessed 22.11.2018) (in Russ.).
  39. Kalitkin N.N., Koryakin P.V. Metody matematicheskoi fiziki (Methods of mathematical physics). M: "Academy", 2013. 304 p. (Numerical methods. Book 2) (in Russ.).
Table of Contents Original Article
Math. Biol. Bioinf.
2018;13(2):454-465
doi: 10.17537/2018.13.454
published in English

Abstract (eng.)
Abstract (rus.)
Full text (eng., pdf)
References

 

  Copyright IMPB RAS © 2005-2024