Russian version English version
Volume 14   Issue 1   Year 2019
Efremov Y.R.1,2, Proskurina A.S.1, Potter E.A.1, Dolgova E.V.1, Efremova O.V.2, Oshchepkov D.Y.1, Kolchanov N.A.1, Bogachev S.S.1

Cancer Stem Cells: «Emergency Service» for Tumors Under Generalized Cellular Stress

Mathematical Biology & Bioinformatics. 2019;14(1):306-326.

doi: 10.17537/2019.14.306.

References

 

  1. Fialkow P.J., Klein G., Gartler S.M., Clifford P. Clonal origin for individual Burkitt tumours. The Lancet. 1970;1:384–386. doi: 10.1016/S0140-6736(70)91517-5
  2. Fialkow P.J., Gartler S.M., Yoshida A., Clonal origin of chronic myelocytic leukemia in man. Proc. Natl. Acad. Sci. USA. 1967;58:1468–1471. doi: 10.1073/pnas.58.4.1468
  3. Steele M.W. Clonal origin for individual Burkitt tumours. Lancet. 1970;1:677.
  4. Baylin S.B., Gann D.S., Hsu S.H. Clonal origin of inherited medullary thyroid carcinoma and pheochromocytoma. Science. 1976;193:321–323. doi: 10.1126/science.935869
  5. Nowell P.C. The clonal evolution of tumor cell populations. Science. 1976;194:23–28. doi: 10.1126/science.959840
  6. Mendez G., Quencer R., Post M., Stokes N. Malignant external otitis: a radiographic-clinical correlation. Am. J. Roentgenol. 1979;132:957–961. doi: 10.2214/ajr.132.6.957
  7. Lavrovsky V.A., Guvakova M.A., Lavrovsky Y.V. High frequency of tumour cell reversion to non-tumorigenic phenotype. Eur. J. Cancer. 1992;28:17–21.
  8. Pathak S. Cytogenetic abnormalities in cancer: with special emphasis on tumor heterogeneity. Cancer Metastasis Rev. 1990;8:299–318. doi: 10.1007/BF00052606
  9. Mattox D.E., Von Hoff D.D. Culture of human head and neck cancer stem cells using soft agar. Arch. Otolaryngol. 1980;106:672–674.
  10. Reya T., Morrison S.J., Clarke M.F., Weissman I.L. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–111. doi: 10.1038/35102167
  11. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4:7–25.
  12. Schofield R. The stem cell system. Biomed. Pharmacother. 1983;37:375–380.
  13. Lin H. The stem-cell niche theory: lessons from flies. Nat. Rev. Genet. 2002;3:931–940. doi: 10.1038/nrg952
  14. Marthiens V., Kazanis I., Moss L., Long K., Ffrench-Constant C. Adhesion molecules in the stem cell niche - more than just staying in shape? J. Cell Sci. 2010;123:1613–1622. doi: 10.1242/jcs.054312
  15. Voog J., Jones D.L. Stem cells and the niche: A dynamic duo. Cell Stem Cell. 2010;6:103–115. doi: 10.1016/j.stem.2010.01.011
  16. O’Brien L.E., Bilder D. Beyond the niche: tissue-level coordination of stem cell dynamics. Annu. Rev. Cell Dev. Biol. 2013;29:107–136.
  17. Dolgova E.V., Alyamkina E.A., Efremov Y.R., Nikolin V.P., Popova N.A., Tyrinova T.V., Kozel A.V., Minkevich A.M., Andrushkevich O.M., Zavyalov E.L. et al. Identification of cancer stem cells and a strategy for their elimination. Cancer Biol. Ther. 2014;15:1378–1394.
  18. Potter E.A., Dolgova E.V, Proskurina A.S., Minkevich A.M., Efremov Y.R., Taranov O.S., Omigov V.V, Nikolin V.P., Popova N.A., Bayborodin S.I. et al. A strategy to eradicate well-developed Krebs-2 ascites in mice. Oncotarget. 2016;7:11580–11594. doi: 10.18632/oncotarget.7311
  19. Potter Å.À., Dolgova Å.V., Proskurina A.S., Efremov Y.R., Taranov O.S., Nikolin V.P., Popova N.A., Dubatolova T.D., Petrova D.D., Vereschagin Å.I. et al. Development of the therapeutic regimen based on the synergistic activity of cyclophosphamide and doublestranded DNA preparation which results in complete cure of mice engrafted with Krebs-2 ascites. Vavilov J. Genet. Breed. 2016;20:723–735.
  20. Greig R.G., Koestler T.P., Trainer D.L., Corwin S.P., Miles L., Kline T., Sweet R., Yokoyama S., Poste G. Tumorigenic and metastatic properties of “normal” and ras-transfected NIH/3T3 cells. Proc. Natl. Acad. Sci. USA. 1985;82:3698–3701. doi: 10.1073/pnas.82.11.3698
  21. Melchiori A., Colacci A., Lollini P.L., De Giovanni C., Carlone S., Grilli S., Parodi S., Albini A. Induction of invasive and experimental metastasis potential in BALB/c 3T3 cells by benzo(a)pyrene transformation. Invasion Metastasis. 1992;12:1–11.
  22. Tuccitto A., Tazzari M., Beretta V., Rini F., Miranda C., Greco A., Santinami M., Patuzzo R., Vergani B., Villa A. et al. Immunomodulatory factors control the fate of melanoma tumor initiating cells. Stem Cells. 2016;34:2449–2460. doi: 10.1002/stem.2413
  23. ElShamy W.M., Duhé R.J. Overview: Cellular plasticity, cancer stem cells and metastasis. Cancer Lett. 2013;341:2–8. doi: 10.1016/j.canlet.2013.06.020
  24. Campos-Sánchez E., Cobaleda C. Tumoral reprogramming: Plasticity takes a walk on the wild side. Biochim. Biophys. Acta. 2015;1849:436–447.
  25. Potter E., Dolgova E., Proskurina A., Efremov Y., Minkevich A., Rozanov A., Peltek S., Nikolin V., Popova N., Seledtsov I. et al. Gene expression profiling of tumor-initiating stem cells from mouse Krebs-2 carcinoma using a novel marker of poorly differentiated cells. Oncotarget. 2017;8:9425–9441. doi: 10.18632/oncotarget.14116
  26. Efremov Y.R., Proskurina A.S., Potter E.A., Dolgova E.V., Efremova O.V., Kolchanov N.A., Bogachev S.S. Yin and Yang of Pluripotency: Results of Analysis of Genes Overexpressed In Tumor-Initiating Cells of Krebs-2 Ascites Carcinoma. Mathematical Biology and Bioinformatics. 2019;14(1):160–187. doi: 10.17537/2019.14.160
  27. Bertout J.A., Patel S.A., Simon M.C. The impact of O2 availability on human cancer. Nat. Rev. Cancer. 2008;8:967–975.
  28. Moulder J.E., Rockwell S. Tumor hypoxia: its impact on cancer therapy. Cancer Metastasis Rev. 1987;5:313–341. doi: 10.1007/BF00055376
  29. Murr C., Fuith L.C., Widner B., Wirleitner B., Baier-Bitterlich G., Fuchs D. Increased neopterin concentrations in patients with cancer: Indicator of oxidative stress? Anticancer Res. 1999;19:1721–1728.
  30. Laviano A., Meguid M.M., Preziosa I., Fanelli F.R. Oxidative stress and wasting in cancer. Curr. Opin. Clin. Nutr. Metab. Care. 2007;10:449–456.
  31. Kurz K., Schroecksnadel S., Weiss G., Fuchs D. Association between increased tryptophan degradation and depression in cancer patients. Curr. Opin. Clin. Nutr. Metab. Care. 2011;14:49–56.
  32. Poormasjedi-Meibod M.S., Salimi Elizei S., Leung V., Baradar Jalili R., Ko F., Ghahary A. Kynurenine modulates MMP-1 and type-I collagen expression via aryl hydrocarbon receptor activation in dermal fibroblasts. J. Cell. Physiol. 2016;231:2749–2760.
  33. Hammoud A.A., Kirstein N., Mournetas V., Darracq A., Broc S., Blanchard C., Zeineddine D., Mortada M., Boeuf H. Murine embryonic stem cell plasticity is regulated through klf5 and maintained by metalloproteinase mmp1 and hypoxia. PLoS One. 2016;11:e0146281. doi: 10.1371/journal.pone.0146281
  34. López-Iglesias P., Alcaina Y., Tapia N., Sabour D., Arauzo-Bravo M.J., Sainz de la Maza D., Berra E., O’Mara A.N., Nistal M., Ortega S. et al. Hypoxia induces pluripotency in primordial germ cells by HIF1α stabilization and Oct4 deregulation. Antioxid. Redox Signal. 2015;22:205–223. doi: 10.1089/ars.2014.5871
  35. Mohyeldin A., Garzón-Muvdi T., Quiñones-Hinojosa A. Oxygen in stem cell biology: A critical component of the stem cell niche. Cell Stem Cell. 2010;7:150–161. doi: 10.1016/j.stem.2010.07.007
  36. Bae K.-M., Dai Y., Vieweg J., Siemann D.W. Hypoxia regulates SOX2 expression to promote prostate cancer cell invasion and sphere formation. Am. J. Cancer Res. 2016;6:1078–1088.
  37. Seo E.J., Kim D.K., Jang I.H., Choi E.J., Shin S.H., Lee S.I., Kwon S.-M., Kim K.-H., Suh D.-S., Kim J.H. Hypoxia-NOTCH1-SOX2 signaling is important for maintaining cancer stem cells in ovarian cancer. Oncotarget. 2016;7:55624–55638. doi: 10.18632/oncotarget.10954
  38. Iida H., Suzuki M., Goitsuka R., Ueno H. Hypoxia induces CD133 expression in human lung cancer cells by up-regulation of OCT3/4 and SOX2. Int. J. Oncol. 2012;40:71–79.
  39. Li Z., Rich J.N. Hypoxia and hypoxia inducible factors in cancer stem cell maintenance. Current Topics in Microbiology and Immunology. 2010:21–30. doi: 10.1007/82_2010_75
  40. Plösch T., Gellhaus A., Van Straten E.M.E., Wolf N., Huijkman N.C.A., Schmidt M., Dunk C.E., Kuipers F., Winterhager E. The liver X receptor (LXR) and its target gene ABCA1 are regulated upon low oxygen in human trophoblast cells: A reason for alterations in preeclampsia? Placenta. 2010;31:910–918.
  41. Liu T., Wang X., Bai Y., Liao H., Qiu S., Yang Y., Yan X., Chen J., Guo H., Zhang S. The HIF-2alpha dependent induction of PAP and adenosine synthesis regulates glioblastoma stem cell function through the A2B adenosine receptor. Int. J. Biochem. Cell Biol. 2014;49:8–16.
  42. Hough R.B., Piatigorsky J. Preferential transcription of rabbit Aldh1a1 in the cornea: implication of hypoxia-related pathways. Mol. Cell. Biol. 2004;24:1324–1340.
  43. Lundqvist A., Sandstedt M., Sandstedt J., Wickelgren R., Hansson G.I., Jeppsson A., Hultén L.M. The arachidonate 15-lipoxygenase enzyme product 15-HETE is present in heart tissue from patients with ischemic heart disease and enhances clot formation. PLoS One. 2016;11:e0161629. doi: 10.1371/journal.pone.0161629
  44. Jam I., Shoham M., Wolf R.O., Mishkin S. Elevated serum amylase activity in the absence of clinical pancreatic or salivary gland disease: possible role of acute hypoxemia. Am. J. Gastroenterol. 1978;70:480–488.
  45. Chen B., Xue J., Meng X., Slutzky J.L., Calvert A.E., Chicoine L.G. Resveratrol prevents hypoxia-induced arginase II expression and proliferation of human pulmonary artery smooth muscle cells via Akt-dependent signaling. Am. J. Physiol. Cell. Mol. Physiol. 2014;307:L317–L325. doi: 10.1152/ajplung.00285.2013
  46. Han W., Takano T., He J., Ding J., Gao S., Noda C., Yanagi S., Yamamura H. Role of BLNK in oxidative stress signaling in B cells. Antioxidants Redox Signal. 2001;3:1065–1073. doi: 10.1089/152308601317203576
  47. Li R., Wang Y., Yang Z., He Y., Zhao T., Fan M., Wang X., Zhu L., Wang X. Hypoxia-inducible factor-1α regulates the expression of L-type voltage-dependent Ca(2+) channels in PC12 cells under hypoxia. Cell Stress Chaperones. 2015;20:507–516. doi: 10.1007/s12192-015-0575-2
  48. Ricciardi A., Elia A.R., Cappello P., Puppo M., Vanni C., Fardin P., Eva A., Munroe D., Wu X., Giovarelli M., Varesio L. Transcriptome of hypoxic immature dendritic cells: Modulation of chemokine/receptor expression. Mol. Cancer Res. 2008;6:175–185.
  49. Botto L., Beretta E., Bulbarelli A., Rivolta I., Lettiero B., Leone B.E., Miserocchi G., Palestini P., Lettiero B., Barbara L. et al. Hypoxia-induced modifications in plasma membranes and lipid microdomains in A549 cells and primary human alveolar cells. J. Cell. Biochem. 2008;105:503–513.
  50. Brown R.C., Mark K.S., Egleton R.D., Huber J.D., Burroughs A.R., Davis T.P. Protection against hypoxia-induced increase in blood-brain barrier permeability: role of tight junction proteins and NFkappaB. J. Cell Sci. 2003;116:693–700. doi: 10.1242/jcs.00264
  51. Martin F., Linden T., Katschinski D.M., Oehme F., Flamme I., Mukhopadhyay C.K., Eckhardt K., Tröger J., Barth S., Camenisch G., Wenger R.H. Copper-dependent activation of hypoxia-inducible factor (HIF)-1: implications for ceruloplasmin regulation. Blood. 2005;105:4613–4619. doi: 10.1182/blood-2004-10-3980
  52. Ganat Y., Soni S., Chacon M., Schwartz M.L., Vaccarino F.M. Chronic hypoxia up-regulates fibroblast growth factor ligands in the perinatal brain and induces fibroblast growth factor-responsive radial glial cells in the sub-ependymal zone. Neuroscience. 2002;112:977–991. doi: 10.1016/S0306-4522(02)00060-X
  53. Mouillet J.-F., Donker R.B., Mishima T., Cronqvist T., Chu T., Sadovsky Y. The unique expression and function of miR-424 in human placental trophoblasts1. Biol. Reprod. 2013;89:25.
  54. Mishra A., Wang J., Shiozawa Y., McGee S., Kim J., Jung Y., Joseph J., Berry J.E., Havens A., Pienta K.J., Taichman R.S. Hypoxia stabilizes GAS6/Axl signaling in metastatic prostate cancer. Mol. Cancer Res. 2012;10:703–712.
  55. Hsiao K.-Y., Wu M.-H., Chang N., Yang S.-H., Wu C.-W., Sun H.S., Tsai S.-J. Coordination of AUF1 and miR-148a destabilizes DNA methyltransferase 1 mRNA under hypoxia in endometriosis. Mol. Hum. Reprod. 2015;21:894–904.
  56. Li X., Yang Y., Fang J., Zhang H. FIZZ1 could enhance the angiogenic ability of rat aortic endothelial cells. Int. J. Clin. Exp. Pathol. 2013;6:1847–1853.
  57. Yang Q., Sun M., Ramchandran R., Raj J.U. IGF-1 signaling in neonatal hypoxia-induced pulmonary hypertension: Role of epigenetic regulation. Vascul. Pharmacol. 2015;73:20–31.
  58. Jögi A., Vallon-Christersson J., Holmquist L., Axelson H., Borg Å., Påhlman S. Human neuroblastoma cells exposed to hypoxia: induction of genes associated with growth, survival, and aggressive behavior. Exp. Cell Res. 2004;295:469–487. doi: 10.1016/j.yexcr.2004.01.013
  59. Xu L., Wang X., Wang J., Liu D., Wang Y., Huang Z., Tan H. Hypoxia-induced secretion of IL-10 from adipose-derived mesenchymal stem cell promotes growth and cancer stem cell properties of Burkitt lymphoma. Tumor Biol. 2016;37:7835–7842. doi: 10.1007/s13277-015-4664-8
  60. Chaudary N., Milosevic M., Hill R.P. Suppression of vascular endothelial growth factor receptor 3 (VEGFR3) and vascular endothelial growth factor C (VEGFC) inhibits hypoxia-induced lymph node metastases in cervix cancer. Gynecol. Oncol. 2011;123:393–400.
  61. Slevin M., Krupinski J., Rovira N., Turu M., Luque A., Baldellou M., Sanfeliu C., de Vera N., Badimon L. Identification of pro-angiogenic markers in blood vessels from stroked-affected brain tissue using laser-capture microdissection. BMC Genomics. 2009;10:113. doi: 10.1186/1471-2164-10-113
  62. Wang P., Xu J., Hou Z., Wang F., Song Y., Wang J., Zhu H., Jin H. miRNA-34a promotes proliferation of human pulmonary artery smooth muscle cells by targeting PDGFRA. Cell Prolif. 2016;49:484–493. doi: 10.1111/cpr.12265
  63. Fu S., Davies K.P. Opiorphin-dependent upregulation of CD73 (a key enzyme in the adenosine signaling pathway) in corporal smooth muscle cells exposed to hypoxic conditions and in corporal tissue in pre-priapic sickle cell mice. Int. J. Impot. Res. 2015;27:140–145.
  64. Shen D., Wang Y. Changes of plasma level of neurotensin, somatostatin, and dynorphin A in pilots under acute hypoxia. Mil. Med. 1998;163:120–121.
  65. Pullamsetti S.S., Banat G.A., Schmall A., Szibor M., Pomagruk D., Hänze J., Kolosionek E., Wilhelm J., Braun T., Grimminger F. et al. Phosphodiesterase-4 promotes proliferation and angiogenesis of lung cancer by crosstalk with HIF. Oncogene. 2013;32:1121–1134. doi: 10.1038/onc.2012.136
  66. Van Thienen R., Masschelein E., D’Hulst G., Thomis M., Hespel P. Twin resemblance in muscle HIF-1α responses to hypoxia and exercise. Front. Physiol. 2017;7:676.
  67. Peek C.B., Levine D.C., Cedernaes J., Taguchi A., Kobayashi Y., Tsai S.J., Bonar N.A., McNulty M.R., Ramsey K.M., Bass J. Circadian clock interaction with HIF1α mediates oxygenic metabolism and anaerobic glycolysis in skeletal muscle. Cell Metab. 2017;25:86–92. doi: 10.1016/j.cmet.2016.09.010
  68. Shen D., Wang Y. Effects of hypoxia on platelet activation in pilots. Aviat. Space. Environ. Med. 1994;65:646–648.
  69. LeCouter J., Lin R., Tejada M., Frantz G., Peale F., Hillan K.J., Ferrara N. The endocrine-gland-derived VEGF homologue Bv8 promotes angiogenesis in the testis: Localization of Bv8 receptors to endothelial cells. Proc. Natl. Acad. Sci. 2003;100:2685–2690.
  70. Friedman G.K., Haas M.C., Kelly V.M., Markert J.M., Gillespie G.Y., Cassady K.A. Hypoxia moderates γ134.5-deleted herpes simplex virus oncolytic activity in human glioma xenoline primary cultures. Transl. Oncol. 2012;5:200–207.
  71. Royer C., Lachuer J., Crouzoulon G., Roux J., Peyronnet J., Mamet J., Pequignot J., Dalmaz Y. Effects of gestational hypoxia on mRNA levels of Glut3 and Glut4 transporters, hypoxia inducible factor-1 and thyroid hormone receptors in developing rat brain. Brain Res. 2000;856:119–128. doi: 10.1016/S0006-8993(99)02365-3
  72. Applebaum M.A., Jha A.R., Kao C., Hernandez K.M., DeWane G., Salwen H.R., Chlenski A., Dobratic M., Mariani C.J., Godley L.A. et al. Integrative genomics reveals hypoxia inducible genes that are associated with a poor prognosis in neuroblastoma patients. Oncotarget. 2016;7:76816–76826. doi: 10.18632/oncotarget.12713
  73. Wu Q.-F., Qian C., Zhao N., Dong Q., Li J., Wang B.-B., Chen L., Yu L., Han B., Du Y.-M., Liao Y.-H. Activation of transient receptor potential vanilloid 4 involves in hypoxia/reoxygenation injury in cardiomyocytes. Cell Death Dis. 2017;8:e2828. doi: 10.1038/cddis.2017.227
  74. Chen L., Fink T., Ebbesen P., Zachar V. Temporal transcriptome of mouse ATDC5 chondroprogenitors differentiating under hypoxic conditions. Exp. Cell Res. 2006;312:1727–1744. doi: 10.1016/j.yexcr.2006.02.013
  75. Ma Y., Yu W., Shrivastava A., Alemi F., Lankachandra K., Srivastava R.K., Shankar S. Sanguinarine inhibits pancreatic cancer stem cell characteristics by inducing oxidative stress and suppressing sonic hedgehog-Gli-Nanog pathway. Carcinogenesis. 2017;38:1047–1056. doi: 10.1093/carcin/bgx070
  76. Cipak A., Mrakovcic L., Ciz M., Lojek A., Mihaylova B., Goshev I., Jaganjac M., Cindric M., Sitic S., Margaritoni M. et al. Growth suppression of human breast carcinoma stem cells by lipid peroxidation product 4-hydroxy-2-nonenal and hydroxyl radical-modified collagen. Acta Biochim. Pol. 2010;57:165–171.
  77. Saijo H., Hirohashi Y., Torigoe T., Horibe R., Takaya A., Murai A., Kubo T., Kajiwara T., Tanaka T., Shionoya Y. et al. Plasticity of lung cancer stem-like cells is regulated by the transcription factor HOXA5 that is induced by oxidative stress. Oncotarget. 2016;7:50043–50056. doi: 10.18632/oncotarget.10571
  78. Gopal K., Gupta N., Zhang H., Alshareef A., Alqahtani H., Bigras G., Lewis J., Douglas D., Kneteman N., Lavasanifar A., Lai R. Oxidative stress induces the acquisition of cancer stem-like phenotype in breast cancer detectable by using a Sox2 regulatory region-2 (SRR2) reporter. Oncotarget. 2016;7:3111–3127. doi: 10.18632/oncotarget.6630
  79. Dayem A.A., Choi H.-Y., Kim J.-H., Cho S.-G. Role of oxidative stress in stem, cancer, and cancer stem cells. Cancers (Basel). 2010;2:859–884. doi: 10.3390/cancers2020859
  80. Davies N.A., Watkeys L., Butcher L., Potter S., Hughes M.G., Moir H., Morris K., Thomas A.W., Webb R. The contributions of oxidative stress, oxidised lipoproteins and AMPK towards exercise-associated PPARγ signalling within human monocytic cells. Free Radic. Res. 2015;49:45–56.
  81. Obianime A.W., Roberts I.I. Antioxidants, cadmium-induced toxicity, serum biochemical and the histological abnormalities of the kidney and testes of the male Wistar rats. Niger. J. Physiol. Sci. 2009;24:177–185.
  82. Strzalka-Mrozik B., Prudlo L., Kimsa M.W., Kimsa M.C., Kapral M., Nita M., Mazurek U. Quantitative analysis of SOD2, ALDH1A1 and MGST1 messenger ribonucleic acid in anterior lens epithelium of patients with pseudoexfoliation syndrome. Mol. Vis. 2013;19:1341–1349.
  83. Jung J.E., Karatas H., Liu Y., Yalcin A., Montaner J., Lo E.H., Van Leyen K. STAT-dependent upregulation of 12/15-lipoxygenase contributes to neuronal injury after stroke. J. Cereb. Blood Flow Metab. 2015;35:2043–2051. doi: 10.1038/jcbfm.2015.169
  84. Touyz R.M. Linking LOX-1 and arginase II through mitochondria: A novel paradigm in endothelial dysfunction. Circ. Res. 2014;115:412–414.
  85. Michalec L., Choudhury B.K., Postlethwait E., Wild J.S., Alam R., Lett-Brown M., Sur S. CCL7 and CXCL10 orchestrate oxidative stress-induced neutrophilic lung inflammation. J. Immunol. 2002;168:846–852. doi: 10.4049/jimmunol.168.2.846
  86. Gupta S., Silva T.S., Osizugbo J.E., Tucker L., Spratt H.M., Garg N.J. Serum-mediated activation of macrophages reflects TcVac2 vaccine efficacy against chagas disease. Infect. Immun. 2014;82:1382–1389.
  87. Iborra A., Mayorga M., Llobet N., Martínez P. Expression of complement regulatory proteins [membrane cofactor protein (CD46), decay accelerating factor (CD55), and protectin (CD59)] in endometrial stressed cells. Cell. Immunol. 2003;223:46–51.
  88. Luna C., Li G., Qiu J., Epstein D.L., Gonzalez P. Role of miR-29b on the regulation of the extracellular matrix in human trabecular meshwork cells under chronic oxidative stress. Mol. Vis. 2009;15:2488–2497.
  89. Wahba M.G.F., Messiha B.A.S., Abo-Saif A.A. Protective effects of fenofibrate and resveratrol in an aggressive model of rheumatoid arthritis in rats. Pharm. Biol. 2016;54:1705–1715.
  90. Dzugkoeva F.S., Mozhaeva I. V., Dzugkoev S.G., Margieva O.I., Tedtoeva A.I., Otiev M.A., Oxidative stress and biochemical markers of endothelial dysfunction and organ damage under conditions of experimental nonferrous metal intoxication. Bull. Exp. Biol. Med. 2016;162:199–202.
  91. Chen E., Proestou G., Bourbeau D., Wang E. Rapid up-regulation of peptide elongation factor EF-1α protein levels is an immediate early event during oxidative stress-induced apoptosis. Exp. Cell Res. 2000;259:140–148. doi: 10.1006/excr.2000.4952
  92. Alizadeh M., Wada M., Gelfman C.M., Handa J.T., Hjelmeland L.M. Downregulation of differentiation specific gene expression by oxidative stress in ARPE-19 cells. Invest. Ophthalmol. Vis. Sci. 2001;42:2706–2713.
  93. Tsai W.-B., Long Y., Park J.-R., Chang J.T., Liu H., Rodriguez-Canales J., Savaraj N., Feun L.G., Davies M.A., Wistuba I.I., Kuo M.T. Gas6/Axl is the sensor of arginine-auxotrophic response in targeted chemotherapy with arginine-depleting agents. Oncogene. 2016;35:1632–1642. doi: 10.1038/onc.2015.237
  94. Gibson L.A., Lavoie R.A., Bissegger S., Campbell L.M., Langlois V.S. A positive correlation between mercury and oxidative stress-related gene expression (GPX3 and GSTM3) is measured in female Double-crested Cormorant blood. Ecotoxicology. 2014;23:1004–1014. doi: 10.1007/s10646-014-1243-5
  95. Jiao H., Natoli R., Valter K., Provis J.M., Rutar M. Spatiotemporal cadence of macrophage polarisation in a model of light-induced retinal degeneration. PLoS One. 2015;10:e0143952. doi: 10.1371/journal.pone.0143952
  96. Yang B., Wagner J., Damaschke N., Yao T., Wuerzberger-Davis S.M., Lee M.H., Svaren J., Miyamoto S., Jarrard D.F. A novel pathway links oxidative stress to loss of Insulin Growth Factor-2 (IGF2) imprinting through NF-κB activation. PLoS One. 2014;9:e88052. doi: 10.1371/journal.pone.0088052
  97. Joseph Martin S., Evan Prince S. Comparative modulation of levels of oxidative stress in the liver of anti-tuberculosis drug treated Wistar rats by vitamin B12, beta-carotene, and Spirulina fusiformis: Role of NF-κB, iNOS, IL-6, and IL-10. J. Cell. Biochem. 2017;118:3825–3833.
  98. Liu D., Zhang R., Wu J., Pu Y., Yin X., Cheng Y., Wu J., Feng C., Luo Y., Zhang J. Interleukin-17A promotes esophageal adenocarcinoma cell invasiveness through ROS-dependent, NF-κB-mediated MMP-2/9 activation. Oncol. Rep. 2017;37:1779–1785.
  99. Nomura M., Yoshimura Y., Kikuiri T., Hasegawa T., Taniguchi Y., Deyama Y., Koshiro K., Sano H., Suzuki K., Inoue N. Platinum nanoparticles suppress osteoclastogenesis through scavenging of reactive oxygen species produced in RAW264.7 cells. J. Pharmacol. Sci. 2011;117:243–252.
  100. Kim H.K., Hwang S.H., Abdi S. Tempol ameliorates and prevents mechanical hyperalgesia in a rat model of chemotherapy-induced neuropathic pain. Front. Pharmacol. 2017;7:532.
  101. Lake A.D., Wood C.E., Bhat V.S., Chorley B.N., Carswell G.K., Sey Y.M., Kenyon E.M., Padnos B., Moore T.M., Tennant A.H. et al. Dose and effect thresholds for early key events in a PPARα-mediated mode of action. Toxicol. Sci. 2016;149:312–325.
  102. Davis B.T., Voigt R.M., Shaikh M., Forsyth C.B., Keshavarzian A. CREB protein mediates alcohol-induced circadian disruption and intestinal permeability. Alcohol. Clin. Exp. Res. 2017;41:2007–2014.
  103. Desai S., Baker S.S., Liu W., Moya D.A., Browne R.W., Mastrandrea L., Baker R.D., Zhu L. Paraoxonase 1 and oxidative stress in paediatric non-alcoholic steatohepatitis. Liver Int. 2014;34:110–117. doi: 10.1111/liv.12308
  104. Lee K.-Y., Feng P.-H., Ho S.-C., Chuang K.-J., Chen T.-T., Su C.-L., Liu W.-T., Chuang H.-C. Inter-alpha-trypsin inhibitor heavy chain 4: a novel biomarker for environmental exposure to particulate air pollution in patients with chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2015;10:831–841.
  105. Sasaki H., Shitara M., Yokota K., Hikosaka Y., Moriyama S., Yano M., Fujii Y. RagD gene expression and NRF2 mutations in lung squamous cell carcinomas. Oncol. Lett. 2012;4:1167–1170.
  106. Takano M., Meneshian A., Sheikh E., Yamakawa Y., Wilkins K.B., Hopkins E.A., Bulkley G.B. Rapid upregulation of endothelial P-selectin expression via reactive oxygen species generation. Am. J. Physiol. Circ. Physiol. 2002;283:H2054–H2061. doi: 10.1152/ajpheart.01001.2001
  107. Frühbeck G., Sáinz N., Rodríguez A., Catalán V., Becerril S., Ramírez B., Gómez-Ambrosi J. Leptin administration downregulates the increased expression levels of genes related to oxidative stress and inflammation in the skeletal muscle of ob/ob mice. Mediators Inflamm. 2010;2010:1–15.
  108. Vo T.K.D., de Saint-Hubert M., Morrhaye G., Godard P., Geenen V., Martens H.J., Debacq-Chainiaux F., Swine C., Toussaint O. Transcriptomic biomarkers of the response of hospitalized geriatric patients admitted with heart failure. Comparison to hospitalized geriatric patients with infectious diseases or hip fracture. Mech. Ageing Dev. 2011;132:131–139.
  109. van Leeuwen D.M., van Agen E., Gottschalk R.W., Vlietinck R., Gielen M., van Herwijnen M.H., Maas L.M., Kleinjans J.C., van Delft J.H. Cigarette smoke-induced differential gene expression in blood cells from monozygotic twin pairs. Carcinogenesis. 2006;28:691–697. doi: 10.1093/carcin/bgl199
  110. Li M., Zhao J., Hu Y., Lu H., Guo J. Oxygen free radicals regulate energy metabolism via AMPK pathway following cerebral ischemia. Neurol. Res. 2010;32:779–784.
  111. Ogino T., Kobuchi H., Fujita H., Matsukawa A., Utsumi K. Erythroid and megakaryocytic differentiation of K562 erythroleukemic cells by monochloramine. Free Radic. Res. 2014;48:292–302.
  112. Andersson-Sjöland A., Karlsson J.C., Rydell-Törmänen K. ROS-induced endothelial stress contributes to pulmonary fibrosis through pericytes and Wnt signaling. Lab. Investig. 2016;96:206–217.
  113. Liu Y., Lu R., Gu J., Chen Y., Zhang X., Zhang L., Wu H., Hua W., Zeng J. Aldehyde dehydrogenase 1A1 up-regulates stem cell markers in benzo[a]pyrene-induced malignant transformation of BEAS-2B cells. Environ. Toxicol. Pharmacol. 2016;45:241–250.
  114. Stanford E.A., Wang Z., Novikov O., Mulas F., Landesman-Bollag E., Monti S., Smith B.W., Seldin D.C., Murphy G.J., Sherr D.H. The role of the aryl hydrocarbon receptor in the development of cells with the molecular and functional characteristics of cancer stem-like cells. BMC Biol. 2016;14:20. doi: 10.1186/s12915-016-0240-y
  115. Ma Y., Liu D. Activation of pregnane X receptor by pregnenolone 16 α-carbonitrile prevents high-fat diet-induced obesity in AKR/J mice. PLoS One. 2012;7:e38734. doi: 10.1371/journal.pone.0038734
  116. Auslander M., Yudkovski Y., Chalifa-Caspi V., Herut B., Ophir R., Reinhardt R., Neumann P.M., Tom M. Pollution-affected fish hepatic transcriptome and its expression patterns on exposure to cadmium. Mar. Biotechnol. 2008;10:250–261.
  117. Lambert C.B., Spire C., Claude N., Guillouzo A. Dose- and time-dependent effects of phenobarbital on gene expression profiling in human hepatoma HepaRG cells. Toxicol. Appl. Pharmacol. 2009;234:345–360.
  118. Łazarenkow A., Michalska M., Mirowski M., Słomiak K., Nawrot-Modranka J. The effect of hydrazine derivatives of 3-formylchromones on angiogenic basic fibroblast growth factor and fibroblast growth factor receptor-1 in human melanoma cell line WM-115. Acta Biochim. Pol. 2017;64:585–590.
  119. Bruchova H., Vasikova A., Merkerova M., Milcova A., Topinka J., Balascak I., Pastorkova A., Sram R.J., Brdicka R. Effect of maternal tobacco smoke exposure on the placental transcriptome. Placenta. 2010;31:186–191. doi: 10.1016/j.placenta.2009.12.016
  120. Li C.Y., Renaud H.J., Klaassen C.D., Cui J.Y. Age-specific regulation of drug-processing genes in mouse liver by ligands of xenobiotic-sensing transcription factors. Drug Metab. Dispos. 2016;44:1038–1049.
  121. Wohlfahrt-Veje C., Audouze K., Brunak S., Antignac J.P., le Bizec B., Juul A., Skakkebæk N.E., Main K.M. Polychlorinated dibenzo-p-dioxins, furans, and biphenyls (PCDDs/PCDFs and PCBs) in breast milk and early childhood growth and IGF1. Reproduction. 2014;147:391–399. doi: 10.1530/REP-13-0422
  122. Wang J., Liu X., Li T., Liu C., Zhao Y. Increased hepatic Igf2 gene expression involves C/EBPβ in TCDD-induced teratogenesis in rats. Reprod. Toxicol. 2011;32:313–321.
  123. Khalil A., Villard P.-H., Dao M.A., Burcelin R., Champion S., Fouchier F., Savouret J.-F., Barra Y., Seree E. Polycyclic aromatic hydrocarbons potentiate high-fat diet effects on intestinal inflammation. Toxicol. Lett. 2010;196:161–167.
  124. Pacheco K.A., Tarkowski M., Sterritt C., Negri J., Rosenwasser L.J., Borish L. The influence of diesel exhaust particles on mononuclear phagocytic cell-derived cytokines: IL-10, TGF-beta and IL-1 beta. Clin. Exp. Immunol. 2001;126:374–383.
  125. Kamaraj S., Anandakumar P., Jagan S., Ramakrishnan G., Devaki T. Modulatory effect of hesperidin on benzo(a)pyrene induced experimental lung carcinogenesis with reference to COX-2, MMP-2 and MMP-9. Eur. J. Pharmacol. 2010;649:320–327.
  126. Gato W.E., Hales D.B., Means J.C. Hepatic gene expression analysis of 2-aminoanthracene exposed Fisher-344 rats reveal patterns indicative of liver carcinoma and type 2 diabetes. J. Toxicol. Sci. 2012;37:1001–1016.
  127. Yeo C.D., Kim Y.A., Lee H.Y., Kim J.W., Kim S.J., Lee S.H., Kim Y.K. Roflumilast treatment inhibits lung carcinogenesis in benzo(a)pyrene-induced murine lung cancer model. Eur. J. Pharmacol. 2017;812:189–195.
  128. Luckhurst C.A., Ratcliffe M., Stein L., Furber M., Botterell S., Laughton D., Tomlinson W., Weaver R., Chohan K., Walding A. Synthesis and biological evaluation of N-alkylated 8-oxybenz[c]azepine derivatives as selective PPARδ agonists. Bioorg. Med. Chem. Lett. 2011;21:531–536.
  129. Manzella N., Bracci M., Staffolani S., Strafella E., Rapisarda V., Valentino M., Amati M., Copertaro A., Santarelli L. Styrene altered clock gene expression in serum-shocked cultured human fibroblasts. Biosci. Biotechnol. Biochem. 2013;77:1296–1298.
  130. Sithu S.D., Srivastava S., Siddiqui M.A., Vladykovskaya E., Riggs D.W., Conklin D.J., Haberzettl P., O’Toole T.E., Bhatnagar A., D’Souza S.E. Exposure to acrolein by inhalation causes platelet activation. Toxicol. Appl. Pharmacol. 2010;248:100–110.
  131. Gouédard C., Barouki R., Morel Y. Dietary polyphenols increase paraoxonase 1 gene expression by an aryl hydrocarbon receptor-dependent mechanism. Mol. Cell. Biol. 2004;24:5209–5222.
  132. Brauze D., Zawierucha P., Kiwerska K., Bednarek K., Oleszak M., Rydzanicz M., Jarmuz-Szymczak M. Induction of expression of aryl hydrocarbon receptor-dependent genes in human HepaRG cell line modified by shRNA and treated with β-naphthoflavone. Mol. Cell. Biochem. 2017;425:59–75.
  133. Hrubá E., Vondráček J., Líbalová H., Topinka J., Bryja V., Souček K., Machala M. Gene expression changes in human prostate carcinoma cells exposed to genotoxic and nongenotoxic aryl hydrocarbon receptor ligands. Toxicol. Lett. 2011;206:178–188.
  134. Pizzino G., Irrera N., Cucinotta M., Pallio G., Mannino F., Arcoraci V., Squadrito F., Altavilla D., Bitto A. Oxidative stress: harms and benefits for human health. Oxid. Med. Cell. Longev. 2017;2017:1–13.
  135. Netzer N., Gatterer H., Faulhaber M., Burtscher M., Pramsohler S., Pesta D. Hypoxia, oxidative stress and fat. Biomolecules. 2015;5:1143–1150. doi: 10.3390/biom5021143
  136. Wigner P., Czarny P., Galecki P., Su K.P., Sliwinski T. The molecular aspects of oxidative & nitrosative stress and the tryptophan catabolites pathway (TRYCATs) as potential causes of depression. Psychiatry Res. 2018;262:566–574. doi: 10.1016/j.psychres.2017.09.045
  137. Ramírez-Ortega D., Ramiro-Salazar A., González-Esquivel D., Ríos C., Pineda B., Pérez de la Cruz V. 3-Hydroxykynurenine and 3-hydroxyanthranilic acid enhance the toxicity induced by copper in rat astrocyte culture. Oxid. Med. Cell. Longev. 2017;2017:1–12.
  138. Jiang X.R., Wrona M.Z., Dryhurst G. Tryptamine-4,5-dione, a putative endotoxic metabolite of the superoxide- mediated oxidation of serotonin, is a mitochondrial toxin: Possible implications in neurodegenerative brain disorders. Chem. Res. Toxicol. 1999;12:429–436.
  139. Chen E.Y., Tan C.M., Kou Y., Duan Q., Wang Z., Meirelles G., Clark N.R., Ma’ayan A. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14:128. doi: 10.1186/1471-2105-14-128
  140. Kuleshov M. V., Jones M.R., Rouillard A.D., Fernandez N.F., Duan Q., Wang Z., Koplev S., Jenkins S.L., Jagodnik K.M., Lachmann A. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–W97. doi: 10.1093/nar/gkw377
  141. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–676. doi: 10.1016/j.cell.2006.07.024
  142. Heng J.C.D., Orlov Y.L., NG H.H. Transcription factors for the modulation of pluripotency and reprogramming. Cold Spring Harb. Symp. Quant. Biol. 2010;75:237–244.
  143. Mathieu J., Zhang Z., Zhou W., Wang A.J., Heddleston J.M., Pinna C.M.A., Hubaud A., Stadler B., Choi M., Bar M. et al. HIF induces human embryonic stem cell markers in cancer cells. Cancer Res. 2011;71:4640–4652. doi: 10.1158/0008-5472.CAN-10-3320
  144. Chang Q., Chen B., Thakur C., Lu Y., Chen F. Arsenic-induced sub-lethal stress reprograms human bronchial epithelial cells to CD61¯ cancer stem cells. Oncotarget. 2014;5:1290–1303. doi: 10.18632/oncotarget.1789
  145. Balvan J., Gumulec J., Raudenska M., Krizova A., Stepka P., Babula P., Kizek R., Adam V., Masarik M. Oxidative stress resistance in metastatic prostate cancer: Renewal by self-eating. PLoS One. 2015;10:e0145016. doi: 10.1371/journal.pone.0145016
  146. Kim M.-C., Cui F.-J., Kim Y. Hydrogen peroxide promotes epithelial to mesenchymal transition and stemness in human malignant mesothelioma cells. Asian Pac. J. Cancer Prev. 2013;14:3625–3630.
  147. Cullingford T.E., Butler M.J., Marshall A.K., Tham E.L., Sugden P.H., Clerk A. Differential regulation of Krüppel-like factor family transcription factor expression in neonatal rat cardiac myocytes: Effects of endothelin-1, oxidative stress and cytokines. Biochim. Biophys. Acta - Mol. Cell Res. 2008;1783:1229–1236.
  148. Kang J., Gemberling M., Nakamura M., Whitby F.G., Handa H., Fairbrother W.G., Tantin D. A general mechanism for transcription regulation by Oct1 and Oct4 in response to genotoxic and oxidative stress. Genes Dev. 2009;23:208–222. doi: 10.1101/gad.1750709
  149. Jang J., Wang Y., Kim H.S., Lalli M.A., Kosik K.S. Nrf2, a regulator of the proteasome, controls self-renewal and pluripotency in human embryonic stem cells. Stem Cells. 2014;32:2616–2625. doi: 10.1002/stem.1764
  150. Peet D.J., Kittipassorn T., Wood J.P., Chidlow G., Casson R.J. HIF signalling: The eyes have it. Exp. Cell Res. 2017;356:136–140. doi: 10.1016/j.yexcr.2017.03.030
  151. Cummins E.P., Taylor C.T. Hypoxia-responsive transcription factors. Pflügers Arch. - Eur. J. Physiol. 2005;450:363–371.
  152. Lee S.H., Manandhar S., Lee Y.M. Roles of RUNX in hypoxia-induced responses and angiogenesis. Adv. Exp. Med. Biol. 2017:449–469. doi: 10.1007/978-981-10-3233-2_27
  153. Klotz L.-O., Steinbrenner H. Cellular adaptation to xenobiotics: Interplay between xenosensors, reactive oxygen species and FOXO transcription factors. Redox Biol. 2017;13:646–654. doi: 10.1016/j.redox.2017.07.015
  154. Huang L., Wang C., Zhang Y., Wu M., Zuo Z. Phenanthrene causes ocular developmental toxicity in zebrafish embryos and the possible mechanisms involved. J. Hazard. Mater. 2013;261:172–180.
  155. Sullivan B.P., Cui W., Copple B.L., Luyendyk J.P. Early growth response factor-1 limits biliary fibrosis in a model of xenobiotic-induced cholestasis in mice. Toxicol. Sci. 2012;126:267–274.
  156. Thiel G., Cibelli G. Regulation of life and death by the zinc finger transcription factor Egr-1. J. Cell. Physiol. 2002;193:287–292.
  157. Araki N., Ohno K., Takeyoshi M., Iida M. Evaluation of a rapid in vitro androgen receptor transcriptional activation assay using AR-EcoScreenTM cells. Toxicol. Vitr. 2005;19:335–352. doi: 10.1016/j.tiv.2004.10.008
  158. Sies H., Berndt C., Jones D.P. Oxidative stress. Annu. Rev. Biochem. 2017;86:715–748. doi: 10.1146/annurev-biochem-061516-045037
  159. Nemmiche S. Oxidative signaling response to cadmium exposure. Toxicol. Sci. 2017;156:4–10. doi: 10.1093/toxsci/kfw222
  160. Zhang J., Wang X., Vikash V., Ye Q., Wu D., Liu Y., Dong W. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell. Longev. 2016;2016:1–18.
  161. Monzen S., Tashiro E., Kashiwakura I. Megakaryocytopoiesis and thrombopoiesis in hematopoietic stem cells exposed to ionizing radiation. Radiat. Res. 2011;176:716–724.
  162. Puri N., Sodhi K., Haarstad M., Kim D.H., Bohinc S., Foglio E., Favero G., Abraham N.G. Heme induced oxidative stress attenuates sirtuin1 and enhances adipogenesis in mesenchymal stem cells and mouse pre-adipocytes. J. Cell. Biochem. 2012;113:1926–1935.
  163. Xu Y., Saegusa C., Schehr A., Grant S., Whitsett J.A., Ikegami M. C/EBPα is required for pulmonary cytoprotection during hyperoxia. Am. J. Physiol. Cell. Mol. Physiol. 2009;297:L286–L298. doi: 10.1152/ajplung.00094.2009
  164. Hour T.-C., Lai Y.-L., Kuan C.-I., Chou C.-K., Wang J.-M., Tu H.-Y., Hu H.-T., Lin C.-S., Wu W.-J., Pu Y.-S. et al. Transcriptional up-regulation of SOD1 by CEBPD: A potential target for cisplatin resistant human urothelial carcinoma cells. Biochem. Pharmacol. 2010;80:325–334.
  165. Banerjee S., Aykin-Burns N., Krager K.J., Shah S.K., Melnyk S.B., Hauer-Jensen M., Pawar S.A. Loss of C/EBPδ enhances IR-induced cell death by promoting oxidative stress and mitochondrial dysfunction. Free Radic. Biol. Med. 2016;99:296–307.
  166. Wan J., Badham H.J., Winn L. The role of c-MYB in benzene-initiated toxicity. Chem. Biol. Interact. 2005;153–154:171–178. doi: 10.1016/j.cbi.2005.03.037
  167. Li J., Zhao L., Zhang Y., Li W., Duan X., Chen J., Guo Y., Yang S., Sun G., Li B. Imbalanced immune responses involving inflammatory molecules and immune-related pathways in the lung of acute and subchronic arsenic-exposed mice. Environ. Res. 2017;159:381–393.
  168. Sakai E., Morita M., Ohuchi M., Kido M.A., Fukuma Y., Nishishita K., Okamoto K., Itoh K., Yamamoto M., Tsukuba T. Effects of deficiency of Kelch-like ECH-associated protein 1 on skeletal organization: a mechanism for diminished nuclear factor of activated T cells cytoplasmic 1 during osteoclastogenesis. FASEB J. 2017;31:4011–4022. doi: 10.1096/fj.201700177R
  169. Li Q., Zhang P., Yu X., Zhao Y., Li Q., Zhang Y., Yang Z., Xie Y., Xue P., Sun S. et al. Lead transiently promotes granulocyte-macrophage progenitor differentiation and subsequently suppresses common myeloid progenitor differentiation. Toxicol. Sci. 2017;160:268–283.
  170. Rich J.N. Cancer stem cells: Understanding tumor hierarchy and heterogeneity. Medicine (Baltimore). 2016;95:S2–S7. doi: 10.1097/MD.0000000000004764
  171. Franco S.S., Szczesna K., Iliou M.S., Al-Qahtani M., Mobasheri A., Kobolák J., Dinnyés A. In vitro models of cancer stem cells and clinical applications. BMC Cancer. 2016;16:738. doi: 10.1186/s12885-016-2774-3
  172. Sakamoto Y., Prudhomme S., Zaman M.H. Viscoelastic gel-strip model for the simulation of migrating cells. Ann. Biomed. Eng. 2011;39:2735–2749.
  173. Lagasse E. Cancer stem cells with genetic instability: the best vehicle with the best engine for cancer. Gene Ther. 2008;15:136–142. doi: 10.1038/sj.gt.3303068
  174. Franzén B., Linder S., Alaiya A.A., Eriksson E., Fujioka K., Bergman A.-C., Jörnvall H., Auer G. Analysis of polypeptide expression in benign and malignant human breast lesions. Electrophoresis. 1997;18:582–587. doi: 10.1002/elps.1150180341
  175. Süsskind D., Hurst J., Rohrbach J.M., Schnichels S. Novel mouse model for primary uveal melanoma: a pilot study. Clin. Experiment. Ophthalmol. 2017;45:192–200.
  176. García-Casas A., García-Olmo D.C., García-Olmo D. Further the liquid biopsy: Gathering pieces of the puzzle of genometastasis theory. World J. Clin. Oncol. 2017;8:378–388.
  177. Wen F., Curlango-Rivera G., Huskey D.A., Xiong Z., Hawes M.C. Visualization of extracellular DNA released during border cell separation from the root cap. Am. J. Bot. 2017;104:970–978. doi: 10.3732/ajb.1700142
  178. Jinesh G.G., Kamat A.M. Blebbishield emergency program: an apoptotic route to cellular transformation. Cell Death Differ. 2016;23:757–758. doi: 10.1038/cdd.2016.26
  179. Jinesh G.G., Kamat A.M. The blebbishield emergency program overrides chromosomal instability and phagocytosis checkpoints in cancer stem cells. Cancer Res. 2017;77:6144–6156. doi: 10.1158/0008-5472.CAN-17-0522
  180. Chang J.C. Cancer stem cells: Role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine (Baltimore). 2016;95:S20–S25. doi: 10.1097/MD.0000000000004766
Table of Contents Original Article
Math. Biol. Bioinf.
2019;14(1):306-326
doi: 10.17537/2019.14.306
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024