Russian version English version
Volume 14   Issue 2   Year 2019
Kulakov M.P., Kurilova E.V., Frisman E.Ya.

Synchronization and Bursting Activity in the Model for Two Predator-Prey Systems Coupled By Predator Migration

Mathematical Biology & Bioinformatics. 2019;14(2):588-611.

doi: 10.17537/2019.14.588.

References

 

  1. Frisman Y.Y., Kulakov M.P., Revutskaya O.L., Zhdanova O.L., Neverova G.P. The key approaches and review of current researches on dynamics of structured and interacting populations. Computer Research and Modeling. 2019;11(1):119-151 (in Russ.). doi: 10.20537/2076-7633-2019-11-1-119-151
  2. Mukhopadhyay B., Bhattacharyya R. Role of predator switching in an eco-epidemiological model with disease in the prey. Ecological Modelling. 2009;220(7):931-939. doi: 10.1016/j.ecolmodel.2009.01.016
  3. Saifuddin Md., Biswas S., Samanta S., Sarkar S., Chattopadhyay J. Complex dynamics of an eco-epidemiological model with different competition coefficients and weak Allee in the predator. Chaos, Solitons & Fractals. 2016;91:270-285. doi: 10.1016/j.chaos.2016.06.009
  4. Comins H.N., Hassell M.P., May R.M. The spatial dynamics of host-parasitoid systems. J. Animal Ecology. 1992;61:735-748. doi: 10.2307/5627
  5. Govorukhin V.N., Morgulis A.B., Tyutyunov Yu.V. Slow taxis in a predator-prey model. Doklady Mathematics. 2000;61(3):420-422..
  6. Tyutyunov Yu.V., Titova L.I., Senina I.N. Prey-taxis destabilizes homogeneous stationary state in spatial Gause-Kolmogorov-type model for predator-prey system. Ecological Complexity. 2017;31:170-180. doi: 10.1016/j.ecocom.2017.07.001
  7. Krivan V., Eisner J. The effect of the Holling type II functional response on apparent competition. Theoretical Population Biology. 2006;70:421-430.
  8. Shen Y. Hou Z., Xin H. Transition to burst synchronization in coupled neuron networks. Physical Review E. 2008;77(031920):1-5. doi: 10.1103/PhysRevE.77.031920
  9. Bakhanova Y.V., Kazakov A.O., Korotkov A.G. Spiral chaos in Lotka-Volterra like models. Middle Volga Mathematical Society Journal. 2017;19(2):13-24 (in Russ.).
  10. Bakhanova Y.V., Kazakov A.O., Korotkov A.G., Levanova T.A., Osipov G.V. Spiral attractors as the root of a new type of "bursting activity" in the Rosenzweig-MacArthur model. Eur. Phys. J. Special. 2018;227:959-970. doi: 10.1140/epjst/e2018-800025-6
  11. Huang T., Zhang H. Bifurcation, chaos and pattern formation in a space-and time-discrete predator-prey system. Chaos, Solitons & Fractals. 2016;91:92-107. doi: 10.1016/j.chaos.2016.05.009
  12. Izhikevich E.M. Neural excitability, spiking and bursting. International Journal of Bifurcation and Chaos. 2000;10(06):1171-1266. doi: 10.1142/S0218127400000840
  13. Izhikevich E.M. Synchronization of Elliptic Bursters. SIAM REVIEW. 2001;43(2):315-344. doi: 10.1137/S0036144500382064
  14. Shilnikov A. Cymbalyuk G. Homoclinic bifurcations of periodic orbits en a route from tonic-spiking to bursting in neuron models. Regular and Chaotic Dynamics. 2004;9(3):281-297. doi: 10.1070/RD2004v009n03ABEH000281
  15. Belykh V.N., Belykh I.V., Colding-J{orgensen M., Mosekilde E. Homoclinic bifurcations leading to the emergence of bursting oscillations in cell models. Eur. Phys. J. E. 2000(3):205-219. doi: 10.1007/s101890070012
  16. Kolomiets M.L., Shilnikov A.L. Qualitative methods for case study of the Hindmarch–Rose model. Rus. J. Nonlin. Dyn. 2010;6(1):23-52 (in Russ.). doi: 10.20537/nd1001003
  17. Jansen V.A.A. The Dynamics of Two Diffusively Coupled Predator-Prey Populations. Theoretical Population Biology. 2001;59(2):119-131. doi: 10.1006/tpbi.2000.1506
  18. Liu Y. The Dynamical Behavior of a Two Patch Predator-Prey Model. Theses, Dissertations, & Master Projects, 2010. 46 p.
  19. Saha S., Bairagi N., Dana S.K. Chimera states in ecological network under weighted mean-field dispersal of species. Front. Appl. Math. Stat. 2019;5(15):1-11. doi: 10.3389/fams.2019.00015
  20. Bazykin A.D.Matematicheskaia biofizika vzaimodeistvuiushchikh populiatsii (Mathematical biophysics of interacting populations). Moscow: Nauka; 1985. 181 p. (in Russ.).
  21. Bazykin A.D. Nonlinear Dynamics of Interacting Populations. Eds. A.I. Khibnik and B. Krauskopf. World Scientific Publishing Co. Pte. Ltd, 1998. 216 p. doi: 10.1142/2284
  22. Rinaldi S., Muratori S. Slow-fast limit cycles in predator-prey models. Ecological Modelling. 1992;61:287-308. doi: 10.1016/0304-3800(92)90023-8
  23. Kulakov M. P., Kurilova E. V., Frisman E. Ya. Effects of synchronization by fluctuations in numbers of two predator-prey communities at saturation predator growth and limitation of the victim number. Information Science and Control Systems. 2015;45(3):24-34 (in Russ.).
  24. Holling C.S. Some characteristics of simple types of predation and parasitism. Canadian Entomologist. 1959;91:385-398. doi: 10.4039/Ent91385-7
  25. Ghosh S., Bhattacharyya S. A two-patch prey-predator model with food-gathering activity. J. Appl. Math. Comput. 2011;37:497-521. doi: 10.1007/s12190-010-0446-z
  26. Kang Y. Sasmal S.K., Messan K. A two-patch prey-predator model with predator dispersal driven by the predation strength. Mathematical Biosciences and Engineering. 2017;14(4):843-880. doi: 10.3934/mbe.2017046
  27. Kurilova E.V., Kulakov M.P. Regional’nye problemy (Regional Problems). 2019;22(1):12-19 (in Russ.). doi: 10.31433/2618-9593-2019-22-1-12-19
  28. Asada T., Yoshida H. Coefficient criterion for four-dimensional Hopf bifurcations: a complete mathematical characterization and applications to economic dynamics. Chaos, Solitons and Fractals. 2003;18:525-536. doi: 10.1016/S0960-0779(02)00674-4
  29. Dhooge A., Govaerts W., Kuznetsov Yu.A., Meijer H.G.E., Sautois B. New features of the software MatCont for bifurcation analysis of dynamical systems. Mathematical and Computer Modelling of Dynamical Systems. 2008;14(2):147-175. doi: 10.1080/13873950701742754
  30. Benoit E., Callot J.L., Diener F., Diener M. Chasse au canard. Collectanea Mathematica. 1981;31-32:37-119.
  31. Ersoz E.K., Desroches M., Mirasso C.R., Rodrigues S. Anticipation via canards in excitable systems. Chaos. 2019;013111(29). doi: 10.1063/1.5050018
  32. Fenichel N. Geometric Singular Perturbation Theory for Ordinary Differential Equations. Journal of Differential Equations. 1979;31:53-98. doi: 10.1016/0022-0396(79)90152-9
  33. Desrochesy M., Kirk V. Spike-Adding in a Canonical Three-Time-Scale Model: Superslow Explosion and Folded-Saddle Canards. SIAM J. Applied dynamical systems. 2018;17(3):1989-2017. doi: 10.1137/17M1143411
Table of Contents Original Article
Math. Biol. Bioinf.
2019;14(2):588-611
doi: 10.17537/2019.14.588
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024