Russian version English version
Volume 14   Issue 2   Year 2019
Sergey A. Lobov

Generalized Memory of STDP-Driven Spiking Neural Network

Mathematical Biology & Bioinformatics. 2019;14(2):649-664.

doi: 10.17537/2019.14.649.

References

 

  1. Anokhin K.V. Vestnik Rossiiskoi akademii nauk (Bulletin of the Russian Academy of Sciences). 2010;80(5–6):455–461 (in Russ.).
  2. Lee J.L.C. Reconsolidation: maintaining memory relevance. Trends Neurosci. 2009;32(8):413–420. doi: 10.1016/j.tins.2009.05.002
  3. Wang S.-H., Morris R.G.M. Hippocampal-Neocortical Interactions in Memory Formation, Consolidation, and Reconsolidation. Annu. Rev. Psychol. Annual Reviews. 2009;61(1):49–79.
  4. Schwabe L., Nader K., Pruessner J.C. Reconsolidation of Human Memory: Brain Mechanisms and Clinical Relevance. Biol. Psychiatry. 2014;76(4):274–280.
  5. Snoddy G.S. Learning and stability: a psychophysiological analysis of a case of motor learning with clinical applications. J. Appl. Psychol. US: American Psychological Association. 1926;10(1):1–36.
  6. Crossman E.R.F.W. A theory of the acquisition of speed-skill. Ergonomics. 1959;2:153–166. doi: 10.1080/00140135908930419
  7. Ebbinghaus H. Memory: A Contribution to Experimental Psychology. Teachers College, Columbia University, 1885.
  8. Kandel E.R. The Molecular Biology of Memory Storage: A Dialogue Between Genes and Synapses. Science. 2001;294(5544):1030–1038. doi: 10.1126/science.1067020
  9. Bakkum D.J., Chao Z.C., Potter S.M. Spatio-temporal electrical stimuli shape behavior of an embodied cortical network in a goal-directed learning task. J. Neural Eng. 2008;5(3):310. doi: 10.1088/1741-2560/5/3/004
  10. Shahaf G., Marom S. Learning in Networks of Cortical Neurons. J. Neurosci. 2001;21(22):8782–8788.
  11. Pimashkin A., Kastalskiy I. Simonov A., Koryagina E., Mukhina I., Kazantsev V. Adaptive enhancement of learning protocol in hippocampal cultured networks grown on multielectrode arrays. Front. Neural Circuits. 2013;7:87. doi: 10.3389/fncir.2013.00087
  12. Baruchi I., Ben-Jacob E. Towards neuro-memory-chip: Imprinting multiple memories in cultured neural networks. Phys. Rev. E. 2007;75(5):50901. doi: 10.1103/PhysRevE.75.050901
  13. Wagenaar D.A., Pine J., Potter S.M. An extremely rich repertoire of bursting patterns during the development of cortical cultures. BMC Neurosci. 2006. doi: 10.1186/1471-2202-7-11
  14. Maeda E., Robinson H.P., Kawana A. The mechanisms of generation and propagation of synchronized bursting in developing networks of cortical neurons. J. Neurosci. 1995;15(10):6834–6845. doi: 10.1523/JNEUROSCI.15-10-06834.1995
  15. Pimashkin A., Kastalskiy I., Simonov A., Koryagina E., Mukhina I., Kazantsev V. Spiking Signatures of Spontaneous Activity Bursts in Hippocampal Cultures. Front. Comput. Neurosci. 2011. doi: 10.3389/fncom.2011.00046
  16. le Feber J., Stegenga J., Rutten W.L.C. The Effect of Slow Electrical Stimuli to Achieve Learning in Cultured Networks of Rat Cortical Neurons. PLoS One. 2010;5(1). Article No. e8871. doi: 10.1371/journal.pone.0008871
  17. Segev R., Shapira Y., Benveniste M., Ben-Jacob E. Observations and modeling of synchronized bursting in two-dimensional neural networks. Phys. Rev. E. 2001;64(1):11920. doi: 10.1103/PhysRevE.64.011920
  18. Degterev A.A., Burtsev M.S. Simulation of Spontaneous Activity in Neuronal Cultures with Long-Term Plasticity. Mathematical Biology and Bioinformatics. 2015;10(1):234–244. doi: 10.17537/2015.10.234
  19. Chao Z.C., Bakkum D.J., Wagenaar D.A., Potter S.M. Neuroinform. 2005;3:263–280. doi: 10.1385/NI:3:3:263
  20. Kawasaki F., Stiber M. A simple model of cortical culture growth: burst property dependence on network composition and activity. Biol. Cybern. 2014;108(4):423–443. doi: 10.1007/s00422-014-0611-9
  21. Chao Z.C., Bakkum D.J., Potter S.M. Region-specific network plasticity in simulated and living cortical networks: comparison of the center of activity trajectory (CAT) with other statistics. J. Neural Eng. 2007;4(3):294–308. doi: 10.1088/1741-2560/4/3/015
  22. Bi G.Q., Poo M.M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 1998;18(24):10464–10472. doi: 10.1523/JNEUROSCI.18-24-10464.1998
  23. Sjöström P.J., Turrigiano G.G., Nelson S.B. Rate, Timing, and Cooperativity Jointly Determine Cortical Synaptic Plasticity. Neuron. 2001;32(6):1149–1164. doi: 10.1016/S0896-6273(01)00542-6
  24. Lobov S., Simonov A., Kastalskiy I., Kazantsev V. Network response synchronization enhanced by synaptic plasticity. Eur. Phys. J. Spec. Top. 2016;225:29–39.
  25. Lobov S.A., Zhuravlev M.O., Makarov V.A., Kazantsev V.B. Noise Enhanced Signaling in STDP Driven Spiking-Neuron Network. Math. Model. Nat. Phenom. 2017;12:109–124. doi: 10.1051/mmnp/201712409
  26. Lobov S., Balashova K., Makarov V.A., Kazantsev V. Competition of Spike-Conducting Pathways in STDP Driven Neural Networks. In: Proceedings of the 5th International Congress on Neurotechnology, Electronics and Informatics – NEUROTECHNIX. 2017. P. 15–21. doi: 10.5220/0006497400150021
  27. O’Keefe J., Nadel L. Précis of O’Keefe & Nadel’s the hippocampus as a cognitive map. Behav. Brain Sci. 1979;2(4):487–494. doi: 10.1017/S0140525X00063949
  28. Moser E.I., Kropff E., Moser M.-B. Place Cells, Grid Cells, and the Brain’s Spatial Representation System. Annu. Rev. Neurosci. Annual Reviews. 2008;31(1):69–89. doi: 10.1146/annurev.neuro.31.061307.090723
  29. Kazanovich Y.B., Mysin I.E. How Animals Find Their Way in Space. Experiments and Modeling. Mathematical Biology and Bioinformatics. 2015;10(1):88–115. doi: 10.17537/2015.10.88
  30. Borisyuk R., Chik D, Kazanovich Y, da Silva Gomes J. Spiking neural network model for memorizing sequences with forward and backward recall. Biosystems. 2013;112(3):214–223. doi: 10.1016/j.biosystems.2013.03.018
  31. Ponulak F., Hopfield J. Rapid, parallel path planning by propagating wavefronts of spiking neural activity. Front. Comput. Neurosci. 2013;7:98. doi: 10.3389/fncom.2013.00098
  32. Krichmar J.L. Seth A.K., Nitz D.A., Fleischer J.G., Edelman G.M. Spatial navigation and causal analysis in a brain-based device modeling cortical-hippocampal interactions. Neuroinformatics. 2005;3(3):197–221. doi: 10.1385/NI:3:3:197
  33. Izhikevich E.M. Simple model of spiking neurons. IEEE Trans. Neural Networks. 2003;14(6):1569–1572. doi: 10.1109/TNN.2003.820440
  34. Izhikevich E.M. Which model to use for cortical spiking neurons? IEEE Trans. Neural Networks. 2004;15(5):1063–1070. doi: 10.1109/TNN.2004.832719
  35. Tsodyks M., Pawelzik K., Markram H. Neural networks with dynamic synapses. Neural Comput. 1998;10(4):821–835. doi: 10.1162/089976698300017502
  36. Morrison A., Diesmann M., Gerstner W. Phenomenological models of synaptic plasticity based on spike timing. Biol. Cybern. 2008;98(6):459–478. doi: 10.1007/s00422-008-0233-1
  37. Song S., Miller K.D., Abbott L.F. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 2000;3:919. doi: 10.1038/78829
  38. Izhikevich E.M. Solving the distal reward problem through linkage of STDP and dopamine signaling. Cereb. Cortex. 2007;17(10):2443–2452. doi: 10.1093/cercor/bhl152
  39. Quiroga Q.R., Panzeri S. Principles of neural coding. Boca Raton: CRC Press, 2013. 623 p. doi: 10.1201/b14756
  40. Rosenbloom P.S. A cognitive odyssey: From the power law of practice to a general learning mechanism and beyond. Tutor. Quant. Methods Psychol. 2006;2(2):43–51. doi: 10.20982/tqmp.02.2.p043
  41. Anderson R.B. The power law as an emergent property. Mem. Cognit. 2001;29(7):1061–1068. doi: 10.3758/BF03195767
  42. Murre J.M.J., Chessa A.G. Power laws from individual differences in learning and forgetting: mathematical analyses. Psychon. Bull. Rev. 2011;18(3):592–597. doi: 10.3758/s13423-011-0076-y
Table of Contents Original Article
Math. Biol. Bioinf.
2019;14(2):649-664
doi: 10.17537/2019.14.649
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024