Russian version English version
Volume 16   Issue 1   Year 2021
Lelekov A.S., Trenkenshu R.P.

Two-Component Model of Microalgae Growth in the Turbidostat

Mathematical Biology & Bioinformatics. 2021;16(1):101-114.

doi: 10.17537/2021.16.101.

References

  1. Bilich G.L., Kryzhanovskii V.A. Biologiia. Polnyi kurs. Vol. 2. Botanika (Biology. Complete course. Vol. 2. Botany). Moscow, 2002. 544 p. (in Russ.).
  2. Fiziologiia rastenii (Plant physiology). Moscow, 2005. 640 p. (in Russ.).
  3. Minkevich I.G. Mathematical Problems of Metabolic Pathway Organization from Biochemical Reactions. Mathematical Biology and Bioinformatics. 2016;11(2):406–425 (in Russ.). doi: 10.17537/2016.11.406
  4. Drozdov-Tikhomirov L.N, Scurida G.I, Serganova V.V. Inner metabolic fluxes in multienzyme systems: lysine synthesis on acetate by Corynebacterium glutamicum. Biotechnologia (Moscow). 1986;2(8):28–37.
  5. Nazipova N.N., Elkin Yu.E., Panjukov V.V., Drozdov-Tikhomirov L.N. Rate Calculation for Metabolic Reactions in a Living and Growing Cell by the Method of Steady-State Stoichiometric Flux Balance. Mathematical Biology and Bioinformatics. 2007;2(1):98–119 (in Russ.). doi: 10.17537/2007.2.98
  6. Alekseev V.V., Kryshev I.I., Sazykina T.G. Fizicheskoe i matematicheskoe modelirovanie ekosistem (Physical and mathematical modeling of ecosystems). St. Petersburg, 1992. 367 p. (in Russ.).
  7. Fursova P.V., Levich A.P. Ekologicheskaia ekspertiza. Obzornaia informatsiia (Environmental assessment. Overview information). 2002;9 (in Russ.).
  8. Pirt S.J. Osnovy kul'tivirovaniia mikroorganizmov i kletok. Moscow, 1978. 330 p. (Translation of Pirt S.J. Principles of Microbe and Cell Cultivation. Blackwell Scientific, 1975).
  9. Pearl R., Reed L.J. On the Mathematical Theory of Population Growth. Metron. 1923;3(1):6–9.
  10. Villi K., Dete V. Biologiia (biologiheskie proczessi i zakoni). (Biology (Biological Processes and Laws)). Moscow, 1975. 822 p. (in Russ.).
  11. Monod J. The growth of bacterial cultures. Ann. Rev. Microbiol. 1949;3:371–394. doi: 10.1146/annurev.mi.03.100149.002103
  12. Blackman F.F. Optima and limiting factors. Ann. Bot. Lond. 1905. V.19:281–295. doi: 10.1093/oxfordjournals.aob.a089000
  13. Liebig J. Chemistry in its Application to Agriculture and Physiology. Ed. Ph. D. Playfair. L.: Philadelphia, 1847. 135 p.
  14. Chernavskii D.S., Ierusalimskii N.D. Izvestiia akademii nauk sssr. Seriia biologicheskaia (Bulletin of the USSR Academy of Sciences. Biological series) 1965;5:665–672 (in Russ.).
  15. Romanovskii Iu.M., Stepanova N.V., Chernavskii D.C. Matematicheskoe modelirovanie v biofizike. (Mathematical Modeling in Biophysics). Moscow, 1975. 344 p. (in Russ.).
  16. Trenkenshu R.P. Kinetika substratzavisimykh reaktsii pri razlichnoi organizatsii metabolicheskikh sistem (Kinetics of Substrate-Dependent Reactions with Different Organization of Metabolic Systems). Sevastopol', 2005. 89 p. (in Russ.).
  17. Flynn K.J. A mechanistic model for describing dynamic multi-nutrient, light, temperature interaction in phytoplankton. J. Plan. Res. 2001;23:977–997. doi: 10.1093/plankt/23.9.977
  18. Trenkenshu R.P., Novikova T.M. Morskoi ekologicheskii zhurnal (Marine Environmental Journal). 2014;13(4):71–78 (in Russ.).
  19. Meer J. An introduction to Dynamic Energy Budget (DEB) models with special emphasis on parameter estimation. J. Sea Research. 2006;56(2):85–102. doi: 10.1016/j.seares.2006.03.001
  20. Monaco C.J., McQuaid Ρ.D. Applicability of Dynamic Energy Budget (DEB) models across steep environmental gradients. Scientific reports. 2018;8. doi: 10.1038/s41598-018-34786-w
  21. Nisbet R.M., Jusup M., Klanjscek T., Pecquerie L. Integrating dynamic energy budget (DEB) theory with traditional bioenergetic models. J. Experim. Biol. 2012;215:892–902. doi: 10.1242/jeb.059675
  22. Minkevich I.G. Material'no-energeticheskii balans i kinetika rosta mikroorganizmov (Material and Energy Balance and Kinetics of Microorganism Growth). Moscow, 2005. 352 p. (in Russ.).
  23. Lelekov A.S., Trenkenshu R.P. Modeling Of Chlorophyll a Content in Microalgae Cultures. Mathematical Biology and Bioinformatics. 2020;15(2):158–171 (in Russ.). doi: 10.17537/2020.15.158
  24. Trenkenshu R.P. Influence of light on microalgae growth in continuous culture of low density. Issues of Modern Algology. 2019;1(19):1–7 (in Russ.). doi: 10.33624/2311-0147-2019-1(19)-1-7
  25. Trenkenshu R.P. The dynamic model of biotransformation of reserved and structural biomass. Issues of Modern Algology. 2016;2(12) (in Russ.). http://algology.ru/967 (accessed 11 May 2021).
  26. Trenkenshu R.P., Lelekov A.S. Modelirovanie rosta mikrovodoroslei v kul'ture (Modeling the Growth of Microalgae in Culture). Belgorod, 2017. 152 p. (in Russ.). doi: 10.21072/978-5-906952-28-8
  27. Torzillo G., Sacchi A., Materassi R., Richmond A. Effect of temperature on yield and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors. J. Appl. Phycol. 1991;3:103–109. doi: 10.1007/BF00003691
  28. Medvedev S.S. Fiziologiia rastenii (Plant Physiology). St. Petersburg, 2004. 336 p. (in Russ.).
  29. Horton P., Ruban A.V. Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. J. Experim. Bot. 2005;56(411):365–373. doi: 10.1093/jxb/eri023
  30. Niyogi K., Li X., Müller P. Non-photochemical quenching. A response to excess light energy. Plant Physiol. 2001;125(4):1558–1566. doi: 10.1104/pp.125.4.1558
  31. Tamoi M., Nagaoka M., Miyagawa Y., Shigeoka S. Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants. Plant & Cell Physiology. 2006;29(10):380–390. doi: 10.1093/pcp/pcj004
  32. Nelson J.R. Rates and possible mechanism of light-dependent degradation of pigments in detritus derived from phytoplankton. J. Mar. Res. 1993;51(1):155–179. doi: 10.1357/0022240933223837
  33. Rubin A.B. Biofizika (Biophysics). Vol. 2. Moscow, 2000. 448 p. (in Russ.).
  34. Goericke R., Welschmeyer N.A. Pigment turnover in the marine diatom Thalassiosira weissflogii. 1. The 14ΡΞ2-labeling kinetics of chlorophyll a. J. Phycol. 1992;28:498–507. doi: 10.1111/j.0022-3646.1992.00498.x
  35. Ustinin D.M., Kovalenko I.B., Riznichenko G.Yu., Rubin A.B. Combination of different simulation techniques in the complex model of photosynthetic membrane. Computer Research and Modeling. 2013;5(1):65–81 (in Russ.). doi: 10.20537/2076-7633-2013-5-1-65-81
  36. Varfolomeev S.D., Gurevich K.G. Biokinetika. Prakticheskii kurs (Biokinetics. Practical Course). Moscow, 1999. 720 p. (in Russ.).
  37. Terskov I.A., Trenkenshu R.P., Belianin V.N. Izvestiia Akademii nauk SSSR. Seriia biologicheskaia (Bulletin of the USSR Academy of Sciences. Biological series). 1981;2(10):103–108 (in Russ.).
  38. Furiaev E.A. Mikrospektrofotometricheskie kharakteristiki kletok vodo-roslei v razlichnykh usloviiakh kul'tivirovaniia (Microspectrophotometric characteristics of alga cells under different cultivation conditions): Ph.D. thesis abstract in biological sciences. Krasnoiarsk, 1979. 23 p.
  39. Borovkov A.B., Gudvilovich I.N. Aktual'nye voprosy biologicheskoi fiziki i khimii (Topical Issues of Biological Physics and Chemistry). 2018;3(3):626–629 (in Russ.).
  40. Pronina N.A. The organization and physiological role of the CO2-cm in microalgal photosynthesis. Russian Journal of Plant Physiology. 2000;47(5):706–714.
Table of Contents Original Article
Math. Biol. Bioinf.
2021;16(1):101-114
doi: 10.17537/2021.16.101
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024