Russian version English version
Volume 17   Issue 1   Year 2022
Lelekov A.S.1, Chernyshev D.N.2, Klochkova V.S.2

Quantitative Regularities of Growth of Arthrospira platensis Batch Culture

Mathematical Biology & Bioinformatics. 2022;17(1):156-170.

doi: 10.17537/2022.17.156.

References

  1. Antal T.K. Mechanisms of adaptation of the photosynthetic apparatus to deficiency basic elements of mineral nutrition: abstract of the PhD dissertation. Moscow, 2018. 46 p. (in Russ.).
  2. Riznichenko G.Yu., Rubin A.B. Dynamic models of electron transport during photosynthesis. Moscow, 2020. 332 p. (in Russ.).
  3. Wu H., Li T., Lv J., Chen Z., Wu J., Wang N., Wu H., Xiang W. Growth and biochemical composition characteristics of Arthrospira platensis induced by simultaneous nitrogen deficiency and seawater-supplemented medium in an outdoor raceway pond in winter. Foods. 2021;10. doi: 10.3390/foods10122974
  4. Marrez D.A.L., Naguib M.M., Sultan Y.Y., Daw Z.Y., Higazy A.M. Evaluation of chemical composition for Spirulina platensis in different culture media. Res. J. Pharm. Biol. Chem. Sci. 2014;5:1161–1171.
  5. Zarrouk C. Contribution à l’étude d’une cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima (Setch et Gardner) Geitler: ph. d. thèse. Paris, 1966. 114 p.
  6. Terskov I.A., Trenkenshu R.P., Belianin V.N. Izvestiia Akademii nauk SSSR. Seriia biologicheskaia (Bulletin of the USSR Academy of Sciences. Biological series). 1981;2(10):103–108 (in Russ.).
  7. Semenenko V.E. Katalog kul'tur mikrovodoroslei v kollektsiiakh SSSR (Catalog of microalgae cultures in the collections of the USSR). Moscow, 1991. 231 p. (in Russ.).
  8. Macintyre H.L., Kana T.M., Anning T., Geider R.J. Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J. Phycol. 2002;38:17–38. doi: 10.1046/j.1529-8817.2002.00094.x
  9. Efimova T.V. Deistvie spektral'nogo sostava sveta na strukturnye i funktsional'nye kharakteristiki mikrovodoroslei (The Effect of the Spectral Composition of Light on the Structural and Functional Characteristics of Microalgae): abstract of the PhD dissertation Sevastopol', 2021. 28 p. (in Russ.).
  10. Pronina N.A. The organization and physiological role of the CO2-cm in microalgal photosynthesis. Russian Journal of Plant Physiology. 2000;47(5):706–714.
  11. Dyhrman S.T. Nutrients and their acquisition: phosphorus physiology in microalgae. Dev. Appl. Phycol. 2016;6. doi: 10.1007/978-3-319-24945-2_8
  12. Sanz-Luque E., Chamizo-Ampudia A., Llamas A., Galvan A., Fernandez E. Understanding nitrate assimilation and its regulation in microalgae. Front. Plant. Sci. 2015;6(899). doi: 10.3389/fpls.2015.00899
  13. Solovchenko A.E., Selivanova E.A., Chekanov K.A., Sidorov R.A., Nemtseva N.V., Lobakova E.S. Induction of secondary carotenogenesis in new halophile microalgae from the genus Dunaliella (Chlorophyceae). Biochemistry (Moscow). 2015;80(11):1508–1513. doi: 10.1134/S0006297915110139
  14. Shoman N.Yu. Sovmestnoe deistvie sveta, temperatury i obespechennosti azotom na skorost' rosta i soderzhanie khlorofilla a u morskikh diatomovykh vodoroslei (The combined effect of light, temperature, and nitrogen availability on growth rate and chlorophyll a content in marine diatoms): abstract of the PhD dissertation. Sevastopol', 2021. 23 p. (in Russ.).
  15. Solomonova E.S. Otsenka fiziologicheskogo sostoianiia mikrovodoroslei s pomoshch'iu tsitometricheskikh i fluorestsentnykh pokazatelei (Assessment of the physiological state of microalgae using cytometric and fluorescent indicators): abstract of the PhD dissertation. Sevastopol', 2021. 23 p. (in Russ.).
  16. Monod J. The growth of bacterial cultures. Ann. Rev. Microbiol. 1949;3:371–394. doi: 10.1146/annurev.mi.03.100149.002103
  17. Flynn K.J. A mechanistic model for describing dynamic multi-nutrient, light, temperature interaction in phytoplankton. J. Plan. Res. 2001;23:977–997. doi: 10.1093/plankt/23.9.977
  18. Nisbet R.M., Jusup M., Klanjscek T., Pecquerie L. Integrating dynamic energy budget (DEB) theory with traditional bioenergetic models. J. Experim. Biol. 2012;215:892–902. doi: 10.1242/jeb.059675
  19. Lelekov A.S., Trenkenshu R.P. Two-Component Model of Microalgae Growth in the Turbidostat. Mathematical Biology and Bioinformatics. 2021;16(1):101–114 (in Russ.). doi: 10.17537/2021.16.101
  20. Abakumov A.I., Pak S.Ya. Modeling of Photosynthesis Process and Assessing Of Phytoplankton Dynamics Based On Droop Model. Mathematical Biology and Bioinformatics. 2021;16(2):380–393 (in Russ.). doi: 10.17537/2021.16.380
  21. Kopytov Yu.P., Lelekov A.S., Gevorgiz R.G., Nekhoroshev M.V., Novikova T.M. Method for the complex determination of the biochemical composition of microalgae. Algology. 2015;25(2):35–40 (in Russ.).
  22. Naqvi K.R., Merzlyak M.N., Melo T.B. Absorption and scattering of light by suspensions of cells and subcellular particles: an analysis in terms of Kramers-Kronig relations. Photochem. Photobiol. Sci. 2004;3:132–137. doi: 10.1039/b304781d
  23. Kupper H., Seibert S., Parameswaran A. Fast, sensitive and inexpensive alternative to analytical pigment HPLC: quantification of chlorophylls and carotenoids in crude extracts by fitting with Gauss peak spectra. Analyt. Chem. 2007;79(20):7611–7627. doi: 10.1021/ac070236m
  24. Lehmuskero A., Skogen Chauton M., Boström T. Light and photosynthetic microalgae: A review of cellular- and molecular-scale optical processes. Progr. Oceanogr. 2018;168:43–56. doi: 10.1016/j.pocean.2018.09.002
  25. Merzlyak M.N., Naqvi K.R. On recording the true absorption and scattering spectrum of a turbid sample: application to cell suspensions of the cyanobacterium anabaena variabilis. J. Photochem. Photobiol. B: Biology. 2000;58:123–129. doi: 10.1016/S1011-1344(00)00114-7
  26. Merzlyak M.N., Chivkunova O.B., Solovchenko A.E., Maslova I.P., Klyachko-Gurvich G.L., Naqvi K.R. Light absorption and scattering by cell suspensions of some cyanobacteria and microalgae. Russian Journal of Plant Physiology. 2008;55(3):420–425. doi: 10.1134/S1021443708030199
  27. Krichen E., Rapaport A., Le Floc’h E., Fouilland E. A new kinetics model to predict the growth of micro-algae subjected to fluctuating availability of light. Algal Research. 2021;58:102–362. doi: 10.1016/j.algal.2021.102362
  28. Belyanin V.N., Sidko F.Ya., Trenkenshu A.P. Energetika fotosinteziruiushchei kul'tury mikrovodoroslei (Energy of photosynthetic culture of microalgae). Novosibirsk, 1980. 136 p. (in Russ.).
  29. Zavorueva E.N., Zavoruev V.V., Krum S.P. Labil'nost' pervoi fotosistemy fototrofov v razlichnykh usloviiakh okruzhaiushchei sredy (Lability of the first photosystem of phototrophs under various environmental conditions). Krasnoiarsk, 2011. 152 p. (in Russ.).
  30. Trenkenshu R.P., Lelekov A.S., Borovrov A.B., Novikova T.M. Unified installation for microalgae laboratory studies. Issues of Modern Algology. 2017;1(13) (in Russ.). http://algology.ru/1097 (accessed 20 May 2022).
  31. Gevorgiz R.G., Malakhov A.S. Pereschet velichiny osveshchennosti fotobioreaktora v velichinu obluchennosti (Recalculation of the illumination value of the photobioreactor into the value of irradiation). Sevastopol', 2018 (in Russ.).
  32. Gevorgiz R.G. Kolichestvennoe opredelenie massovoi doli khlorofilla a v sukhoi biomasse Spirulina (Arthrospira) platensis North. Geitl. (Quantitative determination of the mass fraction of chlorophyll a in the dry biomass of Spirulina (Arthrospira) platensis North. Geitl.): teaching aid. Sevastopol', 2017 (in Russ.).
  33. Trenkenshu R.P., Lelekov A.S., Novikova T.M. Linear growth of marine microalgae culture. Marine Biological Journal. 2018;3(1):53–60. doi: 10.21072/mbj.2018.03.1.06
  34. Minyuk G.S., Drobetskaya I.V., Trenktnshu R.P., Vyalova O.Y. Growth and biochemical characteristics of Spirulina platensis (nordst.) geitler under different conditions of nitrogen nutrition. Ekologiya Moray (Sea Ecology). 2002;62:61–66 (in Russ.).
  35. Jallet D., Caballero M.A., Gallina A.A., Youngblood M., Peers G. Photosynthetic physiology and biomass partitioning in the model diatom Phaeodactylum tricornutum grown in a sinusoidal light regime. Algal Research. 2016;18:51–60. doi: 10.1016/2016.05.014
  36. Gulyayev B.A., Litvin F.F. First and second derivatives of the absorption spectrum of chlorophyll and associated pigments in cells of higher plants and algae at 20 °C. Biophysics. 1970;15(4):670–680.
  37. Bidigare R.R., Ondrusek M.E., Morrow J.H., Kiefer D.A. In-vivo absorption properties of algal pigments. Ocean Optics X. 1990;1302:290–302. doi: 10.1117/12.21451
  38. Hoepffner N., Sathyendranath S. Effect of pigment composition on absorption properties of phytoplankton. Mar. Ecol. Prog. Ser. 1991;73(1):11–23. doi: 10.3354/meps073011
  39. Jeffrey S.W., Mantoura R.F.C., Wright S.W. Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO, 1997. 661 p.
  40. Ñòàäíè÷óê È.Í. Stadnichuk I.N. Fikobiliproteiny. Biologicheskaia khimiia (Phycobiliproteins. Biological chemistry). Moscow, 1990. 196 p. (in Russ.).
  41. Myers J., Graham J.R., Wang R.T. On spectral control of pigmentation in Anacystis nidulans (Cyanophyceae). J. Phycol. 1978;14(4):513–518. doi: 10.1111/j.1529-8817.1978.tb02478.x
  42. Arnon D.I., McSwain B.D., Tsujimoto H.Y., Wada K. Photochemical activity and components of membrane preparations from blue-green algae. I. Coexistence of two photosystems in relation to chlorophyll a and removal of phycocyanin. Bioch. Biophys. Acta. 1974;357(2):231–245. doi: 10.1016/0005-2728(74)90063-2
Table of Contents Original Article
Math. Biol. Bioinf.
2022;17(1):156-170
doi: 10.17537/2022.17.156
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024