Russian version English version
Volume 10   Issue 1   Year 2015
Markelova N.Yu., Masulis I.S., Ozoline O.N.

REP-elements of the Escherichia coli Genome and Transcription Signals: Positional and Functional Analysis

Mathematical Biology & Bioinformatics. 2015;10(1):245-259.

doi: 10.17537/2015.10.245.

References

  1. Stern M.J., Ames G.F.L., Smith N.H., Robinson E.C., Higgins C.F. Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell. 1984;37:1015-1026. doi: 10.1016/0092-8674(84)90436-7
  2. Higgins C.F., McLaren R.S., Newbury S.F. Repetitive extragenic palindromic sequences, mRNA stability and gene expression: evolution by gene conversion? J. Gene. 1988;72:3-14. doi: 10.1016/0378-1119(88)90122-9
  3. Stern M.J., Prossnitz E., Ames G.F.L. Role of the intercistronic region in post-transcriptional control of gene expression in the histidine transport operon of Salmonella typhimurium: involvement of REP sequences. Mol. Microbiol. 1988;2:141-152. doi: 10.1111/j.1365-2958.1988.tb00015.x
  4. Espeli O., Moulin L., Boccard F. Transcription attenuation associated with bacterial repetitive extragenic BIME elements. Mol. Biol. 2001;314:375-386. doi: 10.1006%2Fjmbi.2001.5150
  5. Merino E., Becerril B., Valle F., Bolivar F. Deletion of a repetitive extragenic palindromic (REP) sequence downstream from the structural gene of Esñherihia coli glutamate dehydrogenase affects the stability of its mRNA. Gene. 1987;58:305-309. doi: 10.1016/0378-1119(87)90386-6
  6. Newbury S.F., Smith N.H., Robinson E.C., HiIes I.D., Higgins C.F. Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell. 1987;48:297-310. doi: 10.1016/0092-8674(87)90433-8
  7. Bachellier S., Clement J.M., Hofnung M. Short palindromic repetitive DNA elements in enterobacteria: a survey. J. Res. Microbiol. 1999;150:627-639. doi: 10.1016/S0923-2508(99)00128-X
  8. Khemici V., Carpousis A.J. The RNA degradosome and poly(A) polymerase of Escherichia coli are required in vivo for the degradation of small mRNA decay intermediates containing REP-stabilizers. Mol Microbiol. 2004;51:777-790. doi: 10.1046/j.1365-2958.2003.03862.x
  9. Ton-Hoang B., Siguier P., Quentin Y., Onillon S., Marty B., Fichant G., Chandler M. Structuring the bacterial genome: Y1-transposases associated with REP-BIME sequences. J. Nucleic Acids Res. 2012;40:3596-3609. doi: 10.1093/nar/gkr1198
  10. Moulin L., Rahmouni A.R., Boccard F. Topological insulators inhibit diffusion of transcription-induced positive supercoils in the chromosome of Escherichia coli. Mol Microbiol. 2005;55:601-610. doi: 10.1111/j.1365-2958.2004.04411.x
  11. Messing S.A, Ton-Hoang B., Hickman A.B., McCubbin A.J., Peaslee G.F., Ghirlando R., Chandler M., Dyda F. The processing of repetitive extragenic palindromes: the structure of a repetitive extragenic palindrome bound to its associated nuclease. J. Nucleic Acids Res. 2012;40:9964-9979. doi: 10.1093/nar/gks741
  12. Di Nocera P.P., De Gregorio E., Rocco F. GTAG- and CGTC-tagged palindromic DNA repeats in prokaryotes. J. BMC Genomics. 2013;14:522. doi: 10.1186/1471-2164-14-522
  13. Salgado H., Peralta-Gil M., Gama-Castro S., Santos-Zavaleta A., Muñiz-Rascado L., García-Sotelo J.S., Weiss V., Solano-Lira H., Martínez-Flores I., Medina-Rivera A. et al. RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more. Nucleic Acids Res. 2013;41:D203. doi: 10.1093/nar/gks1201
  14. Panyukov V.V., Kiselev S.S., Shavkunov K.S., Masulis I.S., Ozoline O.N. Mixed promoter islands as genomic regions with specific structural and functional properties. Mathematical Biology and Bioinformatics. 2013;8(2):t12-t26. doi: 10.17537/2013.8.t12
  15. Kiselev S.S., Ozoline O.N. Structure-specific modules as indicators of promoter dna in bacterial genomes. Mathematical Biology and Bioinformatics. 2011;6(1):t1-t13. doi: 10.17537/2011.6.t1
  16. Shavkunov K.S., Masulis I.S., Tutukina M.N., Deev A.A., Ozoline O.N. Gains and unexpected lessons from genome-scale promoter mapping. Nucl. Acids Res. 2009;37:4919-4931. doi: 10.1093/nar/gkp490
  17. Reppas N.B., Wade J.T., Church G.M., Struhl K. The transition between transcriptional initiation and elongation in E. coli is highly variable and often rate limiting. Mol. Cell. 2006;24:747-757. doi: 10.1016/j.molcel.2006.10.030
  18. NCBI Microbial Nucleotide BLAST. http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch&BLAST_SPEC=MicrobialGenomes (accessed 07 June 2015).
  19. Igarashi K., A. Ishihama. Bipartite functional map of the E. coli RNA polymerase α subunit: involvement of the C-Terminal region in transcription activation by CAMP-CRP. Cell. 1991;65:1015-1022. doi: 10.1016/0092-8674(91)90553-B
  20. Mathews D.H. RNA secondary structure analysis using RNAstructure. Current Protocols in Bioinformatics. 2014;46:12.6.1-12.6.25. doi: 10.1002/0471250953.bi1206s46
  21. Liang W., Rudd K.E., Deutscher M.P. A Role for REP sequences in regulating translation. Mol. Cell. 2015;58(3):431-439. doi: 10.1016/j.molcel.2015.03.019
  22. Brok-Volchanski A.S., Masulis I.S., Shavkunov K.S., Lukyanov V.I., Purtov Yu.A., Kostyanicina E.G., Deev A.A., Ozoline O.N. Predicting sRNA genes in the genome of E. coli by the promoter-search algorithm PlatProm. In: Bioinformatics of Genome Regulation and Structure II. Eds. Kolchanov N., Hofestaedt R. Springer; 2005. P. 11-20. doi: 10.1007/0-387-29455-4_2
  23. Panyukov V.V., Ozoline O.N. Promoters of Escherichia coli versus promoter islands: function and structure comparison. PLoS ONE. 2013;8:e62601. doi: 10.1371/journal.pone.0062601
  24. Purtov Yu.A., Glazunova O.A., Antipov S.S., Pokusaeva V.O., Fesenko E.E., Preobrazhenskaya V.V., Shavkunov K.S., Tutukina M.N., Lukyanov V.I., Ozoline O.N. Promoter islands as a platform for interaction with nucleoid proteins and transcription factors. J. Bioinformatics and Computational Biology. 2014;12(2):322-331. doi: 10.1142/S0219720014410066
  25. Vogel J., Bartels V., Tang T.H, Churakov G., Slagter-Jäger J.G., Hüttenhofer A., Wagner E.G. RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. Nucleic Acids Res. 2003;31:6435-6443. doi: 10.1093/nar/gkg867
  26. Miyakoshi M., Chao Y., Vogel J. Cross talk between ABC transporter mRNAs via a target mRNA-derived sponge of the GcvB small RNA. EMBO J. 2015;34:1478-1492. doi: 10.15252/embj.201490546
Table of Contents Original Article
Math. Biol. Bioinf.
2015;10(1):245-259
doi: 10.17537/2015.10.245
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References Translation into English
Math. Biol. Bioinf.
2016;11(Suppl):t1-t14
doi: 10.17537/2016.11.t1

Full text (eng., pdf)

 

  Copyright IMPB RAS © 2005-2024