Russian version English version
Volume 13   Issue 2   Year 2018
Pankratova N.M., Rykunov S.D., Boyko A.I., Molchanova D.A., Ustinin M.N.

Localization of Encephalogram Spectral Features in Psychic Disorders

Mathematical Biology & Bioinformatics. 2018;13(2):322-336.

doi: 10.17537/2018.13.322.

References

 

  1. Llinas R. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science. 1988;242(4886):1654-1664. doi: 10.1126/science.3059497
  2. Llinas R.R., Pare D. Of dreaming and wakefulness. Neuroscience. 1991;44(3):521-535. doi: 10.1016/0306-4522(91)90075-Y
  3. Schulman J.J., Cancro R., Lowe S., Lu F., Walton K.D, Llinas R.R. Imaging of thalamocortical dysrhythmia in neuropsychiatry. Frontiers in Human Neuroscience. 2011;5. Article No. 69. doi: 10.3389/fnhum.2011.00069
  4. Llinás R.R., Ustinin M.N. Precise Frequency-Pattern Analysis to Decompose Complex Systems into Functionally Invariant Entities: U.S. Patent. US Patent App. Publ. 20160012011 A1. 01/14/2016.
  5. Llinás R.R., Ustinin M.N. Frequency-pattern functional tomography of magnetoencephalography data allows new approach to the study of human brain organization. Front. Neural Circuits. 2014;8. Article No. 43. doi: 10.3389/fncir.2014.00043
  6. Llinás R.R., Ustinin M.N., Rykunov S.D., Boyko A.I., Sychev V.V., Walton K.D., Rabello G.M., Garcia J. Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data. Front. Neurosci. 2015;9. Article No. 373. doi: 10.3389/fnins.2015.00373
  7. Rykunov S.D., Ustinin M.N., Polyanin A.G., Sychev V.V., Llinás R.R. Software for the Partial Spectroscopy of Human Brain. Mathematical Biology and Bioinformatics. 2016;11(1):127-140 (in Russ.). doi: 10.17537/2016.11.127
  8. Honaga E., Ishii R., Kurimoto R., Canuet L., Ikezawa K., Takahashi H., Nakahachi T., Iwase M., Mizuta I., Yoshimine N., Takeda M. Post-movement beta rebound abnormality as indicator of mirror neuron system dysfunction in autistic spectrum disorder: An MEG study. Neuroscience Letters. 2010;478:141-145. doi: 10.1016/j.neulet.2010.05.004
  9. Kirenskaya A.V. EEG-studies in biological psychiatry: main trends and outlook. Russian Journal of Psychiatry. 2006;6:19-27 (in Russ.).
  10. Ragozinskaya V.G. Peculiarities of EEG spectral power in auto-aggression. Izvestiia vysshikh uchebnykh zavedenii. Ural'skii region (Proceedings of higher educational institutions. Ural region). 2015(2):97-104 (in Russ.).
  11. Kirenskaia-Berus A.V., Gavrilenko A.Ia., Zhuravlev A.B., Lavrova T.N., Maksimova N.V., Miamlin V.V., Novototskii-Vlasov B.Iu., Vandysh-Bubko V.V., Tkachenko A.A. In: Agressiia i psikhicheskoe zdorov'e (Aggression and mental health). Eds. Dmitrieva T.B. and Shostakovich B.V. Moscow; 2002. P. 323-349 (in Russ.).
  12. Harrewijn A., Van der Molen M.J.W., Westenberg P.M. Putative EEG measures of social anxiety: Comparing frontal alpha asymmetry and delta-beta cross-frequency correlation. Cognitive, Affective and Behavioral Neuroscience. 2016;16(6):1086-1098. doi: 10.3758/s13415-016-0455-y
  13. Kirenskaya-Berus A.V., Tkachenko A.A. Characteristic Features of EEG Spectral Characteristics in Persons with Deviant Sexual Behavior. Human Physiology. 2003;29(3):22-32 (in Russ.). doi: 10.1023/A:1023982119972
  14. Fingelkurts A.A. Altered structure of dynamic electroencephalogram oscillatory pattern in major depression. Biological Psychiatry. 2015;77(12):1050-1060. doi: 10.1016/j.biopsych.2014.12.011
  15. Cavanagh J.F., Shackman A.J. Frontal Midline Theta Reflects Anxiety and Cognitive Control: Meta-Analytic Evidence. Journal of Physiology, Paris. 2015;109:3-15. doi: 10.1016/j.jphysparis.2014.04.003
  16. Pinner J.F.L., Cavanagh J.F. Frontal theta accounts for individual differences in the cost of conflict on decision making. Brain Research. 2017;1672:73-80. doi: 10.1016/j.brainres.2017.07.026
  17. Jeste S.S., Frohlich J., Loo S.K. Electrophysiological biomarkers of diagnosis and outcome in neurodevelopmental disorders. Current Opinion in Neurology. 2015;28(2):110-116. doi: 10.1097/WCO.0000000000000181
  18. Pashkov A.A., Dakhtin I.S., Kharisova N.S. Electroencephalographic biomarkers of experimentally induced stress. Bulletin of the South Ural State University. Series “Psychology”. 2017;10(4):68-82 (in Russ.).
  19. Palmiero M., Piccardi L. Frontal EEG Asymmetry of Mood: A Mini-Review. Frontiers in Behavioral Neuroscience. 2017;11. Article No. 224. doi: 10.3389/fnbeh.2017.00224
  20. Koolhaas J.M., Bartolomucci A., Buwalda B., de Boer S.F., Flügge G., Korte S.M., Meerlo P., Murison R., Olivier B., Palanza P., et al. Stress revisited: a critical evaluation of stress concept. Neuroscience and Biobehavioral Reviews. 2011;35(5):1291-1301. doi: 10.1016/j.neubiorev.2011.02.003
  21. Fumoto M., Sato-Suzuki I., Seki Y., Mohri Y., Arita H. Appearance of high-frequency alpha band with disappearance of low-frequency alpha band in EEG is produced during voluntary abdominal breathing in an eyes-closed condition. Neuroscience Research. 2004;50(3):307-317. doi: 10.1016/j.neures.2004.08.005
  22. Dunkley B.T., Sedge P.A., Doesburg S.M., Grodecki R.J., Jetly R., Shek P.N., Taylor M.J., Pang E.W. Theta, mental flexibility, and post-traumatic stress disorder: connecting in the parietal cortex. PLOS One. 2015;10(4). Article No. e0123541. doi: 10.1371/journal.pone.0123541
  23. Werff S.J., van der Berg S.M., Pannekoek J.N., Elzinga B.M., van der Wee N.J. Neuroimaging resilience to stress: a review. Frontiers in Behavioral Neuroscience. 2013;7. Article No. 39. doi: 10.3389/fnbeh.2013.00039
  24. Llinas R.R., Ribary U., Jeanmonod D., Kronberg E., Mitra P.P. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proceedings of the National Academy of Sciences of the USA. 1999;96:15222-15227. doi: 10.1073/pnas.96.26.15222
  25. Schulman J.J, Ramirez R.R., Zonenshayn M., Ribary U., Llinas R.R. Thalamocortical dysrhythmia syndrome: MEG imaging of neuropathic pain. Thalamus & Related Systems. 2005;3(1):33-39. doi: 10.1017/S1472928805000063
  26. Pankratova N.M., Ustinin M.N., Llinás R.R. The Method to Reveal Pathologic Activity of Human Brain in the Magnetic Encephalography Data. Mathematical Biology and Bioinformatics. 2013;8(2):679-690 (in Russ.). doi: 10.17537/2013.8.679
  27. Mel'nikova T.S., Lapin I.A., Sarkisian V.V. Sotsial'naia i klinicheskaia psikhiatriia (Social and Clinical Psychiatry). 2009;19(1):90-94 (in Russ.).
  28. Luschekina E.A., Khaerdinova O.Yu., Luschekin V.S., Strelets V.B. Interhemispheric Differences in the Spectral Power and Coherence of EEG Rhythms in Children with Autism Spectrum Disorders. Human Physiology. 2017;43(3):265-273. doi: 10.1134/S0362119717030112
  29. Strelets V.B., Magomedov R.A., Golikova J.V., Novototsky-Vlasov V.Yu. Spectral Power and Cortical Interactions in the Beta2 Rhythm in Normal Subjects and Schizophrenic Patients. I.P. Pavlov Journal of Higher Nervous Activity. 2004;54(2):229-236 (in Russ.).
  30. Basar-Eroglu C., Schmiedt-Fehr C., Marbach S., Brand A., Mathes B. Altered oscillatory alpha and theta networks in schizophrenia. Brain Res. 2008;15(1235):143-152. doi: 10.1016/j.brainres.2008.06.114
  31. Knyazeva M.G., Jalili M., Meuli R., Hasler M., De Feo O., Do K.Q. Alpha rhythm and hypofrontality in schizophrenia. Acta Psychiatr. Scand. 2008;118(3):188-199. doi: 10.1111/j.1600-0447.2008.01227.x
  32. Gregory M., Mandelbaum D. Evidence of a faster posterior dominant EEG rhythm in children with autism. Research in Autism Spectrum Disorders. 2012;6:1000. doi: 10.1016/j.rasd.2012.01.001
  33. Rizzolatti G., Craighero L. The mirror-neuron system. Annual Review of Neuroscience. 2004;27:169-192. doi: 10.1146/annurev.neuro.27.070203.144230
  34. Luschekina E.A., Podreznaia E.D., Luschekin V.S., Novototsky-Vlasov V.Yu., Strelets V.B. I.P. Pavlov Journal of Higher Nervous Activity. 2013;63(4):451-459 (in Russ.).
  35. Menassa D.A., Braeutigama S., Bailey A., Falter-Wagner C.M. Frontal evoked γ activity modulates behavioural performance in Autism Spectrum Disorders in a perceptual simultaneity task. Neuroscience Letters. 2018;665(5):86-91. doi: 10.1016/j.neulet.2017.11.045
  36. Makeig S., Jung T.P., Bell A.J., Ghahremani D., Sejnowski T.J. Blind separation of auditory event-related brain responses into independent components. Proc. Natl.Acad. Sci. U.S.A. 1997;94:10979-10984. doi: 10.1073/pnas.94.20.10979
  37. Frigo M., Johnson S.G. The Design and Implementation of FFTW3. Proceedings of the IEEE. 2005;93(2):216-231. doi: 10.1109/JPROC.2004.840301
  38. Belouchrani A., Abed-Meraim K., Cardoso J.-F., Moulines E. A blind source separation technique using second-order statistics. IEEE Trans. Signal Processing. 1997;45:434-444. doi: 10.1109/78.554307
  39. Sarvas J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys. Med. Biol. 1987;32(1):11-22. doi: 10.1088/0031-9155/32/1/004
  40. Pankratova N.M., Rykunov S.D., Ustinin M.N. Localization of the spectral features of the encephalograms in psychic disorders: Keldysh Institute PREPRINTS. 2018. No. 138. 20 p. doi: 10.20948/prepr-2018-138 (in Russ.).
Table of Contents Original Article
Math. Biol. Bioinf.
2018;13(2):322-336
doi: 10.17537/2018.13.322
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024